IrrHaskell User Manual

Ewen Cochran
School of Informatics

University of Edinburgh

2011

Types

Behavior

One of the fundamental types of functional reactive programming. Treats time as a

continuous and increasing input to produce a stream of values.

BehaviorValues

A record of Behaviors which can be applied to a NodePtr object. Constructor is as

follows:

Beh {position :: Behavior Position, rotation :: Behavior Rotation, visibility :: Behavior
Visible }

Display

Defines the information needed to display text on the GUI of the game. Constructed

as the triple - (String, String, Bool) - where the values correspond to:

(text to display, font, show background)

Event

A fundamental type of functional reactive programming. Treats time as an increasing
input to produce a series of time-value pairs where the values are either Just var or

Nothing depending on whether the Event has happened or not.

MeshPtr

A type representing the pointer to a mesh stored within C++. Use this to refer to a

mesh within the game.

Model

Holds the details and information of what a model should contain. Contructed as a

4-tuple of (String, String, Position, Behavior Values) where the values correspond to:

(path to object mesh, path to object texture, initial position of the object, Behaviors to

apply to the object)

NodePtr

A type representing the pointer to a node stored within C++. Use this to refer to a node

within the game.

Position

Refers to a 3D coordinate within the game environment. Equivalent to (Int, Int, Int)

where the values represent the x, y, and z coordinates of the object.

Rotation

Refers to a 3D coordinate within the game environment. Equivalent to (Int, Int, Int)

where the values represent the x, y, and z coordinates the object should face.

Time

An equivalence of Haskell’s POSIXTime (Data.Time.Clock.POSIX).

Visible

An equivalence of the Bool type in Haskell. Values are True or False depending on the

visibility wanted.

Functions

(.].) :: Event a —> Event a —> Event a
(.&.) :: Event () —> Event () —> Event ()

Similar to the Boolean operators (||) and (&&). If either Event reads a Just value then

(.].) will return a Just value. If both Events read a Just value then (.&.) will return a

Just value.
(=>>) :: Event a —> (a—>b) —> Event b
(—>>) :: Event a —> b —> Event b

The function (=>>) receives data from an Event. This data is then used to produce
an Event of a different type. (— >>) is a special case of (=>>) in which the data is

not received from the inital Event.

(>%), (<%) :: Ord a => Behavior a —> Behavior a —> Behavior Bool
(==%) :: Ord a => Behavior a —> Behavior a —> Behavior Bool

(>=%x), (<=x%) :: Ord a => Behavior a —> Behavior a —> Behavior Bool
(&&*), (||*) :: Ord a => Behavior a —> Behavior a —> Behavior Bool

Ordinal and logical operators for use with Behaviors over ordinal data types. Produces

a Behavior Bool which can then be used to create Events.

behRecord :: BehaviorValues

The default record of Behaviors.

createExtrudedMesh :: [(Int,Position)] —> Position —> IO MeshPtr

Allows the creation of customised polygon objects in the game based on a list of ver-
tices. Returns a MeshPtr which can be used to created a NodePtr for use within the

game.

distanceBetweenBeh :: Behavior Position —> Behavior Position —>

Behavior Float

Takes two Behaviors over Position and returns a Behavior Float where the value at

each time value is the distance between the two positions at the same time.

eventOr :: [Event a] —> Event a

eventAnd :: [Event ()] —> Event ()

Operate over a list Events to produce a single Event. eventOr adds Just to the output
Event when one or more Events in the input have a Just value. eventAnd adds Just to

the output Event when all of the Events in the input have a Just value.

fstB :: Behavior (a,b) —> Behavior a
sndB :: Behavior (a,b) —> Behavior b

Returns a Behavior over the first, or second, value of a Behavior over a tuple.

fstTriple :: (a,b,c) —> a
sndTriple :: (a,b,c) —> b
trdTriple :: (a,b,c) —> ¢

Similar to the fst and snd functions defined in the Haskell Prelude, except for use with

triples. This included as triple are a common feature within the library.

key :: Event Char
Ibp, sample :: Event ()
collision :: Behavior Float —> [NodePtr] —> [NodePtr] — Event

O

Standard Events within the library. key and Ibp denote key presses and left mouse
button presses respectively. The collision event shows Just when objects from two

groups pass within a distance threshold of each other.

l1ift0 , constB :: a —> Behavior a
liftl :: (a —> b) —> (Behavior a —> Behavior b)

Lifting functions to turn standard types into Behaviors over that type. The constB and
lift0 functions take a static value and yield a Behavior over that value. liftl applies a
function, taking one value and returning another, to the values of a Behavior to produce

a new Behavior. There are also functions called lift2, 1ift3, 1ift4, and lift5 available.

These operate in the same way as liftl, except for functions of increasing numbers of

parameters.

loadAmbientLight :: (Int,Int,Int,Int) —> 10 ()

Places an ambient light into the game environment with the (r,g,b,alpha) value passed

into the function.

loadCharacters :: [Model]| — IO [NodePtr]
loadMeshes :: [(MeshPtr, String , Position , BehaviorValues)] — 10 [
NodePtr]

The loadCharacters function is used to load in a list of pre-made character models into
the game. The loadMeshes function can be used to retrieve a list of NodePtrs based

upon the MeshPtrs create by createExtrudedMesh.

loadStandardCamera, loadFPSCamera :: Position —> Position —> IO
NodePtr

Creates either a standard, fixed position, camera or a controllable first-person shooter

style camera. Returns a NodePtr for use and reference throughout the game.

maximumB, minimumB :: [Behavior Int] —> Int —> Behavior Int

Used to create a Behavior which, at every time sample, shows the maximum or mini-

mum value of a list of Behaviors.

nodePosition :: NodePtr —> Behavior Position

nodeVisibility :: NodePtr —> Behavior Int

Creates a Behavior over the position, or visibility, of a given node. Note that nodeVis-

iblitity shows a 1 value if the node is visible and a O value if it is not.

pairB :: Behavior a —> Behavior b —> Behavior (a,b)

Takes two Behaviors and produces a Behavior over a the tuple of their values. Func-

tions tripleB, quadB, and pentB are also available.

randomB :: Behavior Int

Produces a stream of random Integer values. These can then be used to trigger random

Events.

reactimate
Behavior Position —> Behavior Display —> [(NodePtr,
BehaviorValues)] —> 10 ()

The primary driver for the game engine. Pass in the Behavior over the camera’s Po-
sition, a Behavior over the Display (used for the GUI text), and a list of NodePtr-
BehaviorValues pairs (used to define every object in the game as well as their behav-

ior).

setUp :: String —> Model — [0 NodePtr — [0 () —> 10 NodePtr

A single function to define and initialise the game environment. Pass in the window
caption, map model, the appropriate camera function, and a light function. The camera

node is returned.

step :: a —> Event a —> Behavior a

stepAccum :: a —> Event (a —> a) —> Behavior a

These are based on the switch function. When the Event occurs, the step function
changes the value of the Behavior to the value associated with the Event. In stepAc-
cum, the functiona ssociated with the Event is applied to the last value of the Behavior

to produce a new Behavior.

time :: Behavior Time

A Behavior where the value at each time step is the current time. This can be used

when creating Behaviors which are dependent on the time.

undefinedBehavior :: Behavior a

A Behavior where, at every time sample, the value undefined is produced.

undefinedModel :: Model

A default Model value where each value is set as undefined. Useful for cases where no

Model is required.

untilB , switch :: Behavior a —> Event b —> Behavior a

These are functions for linking Behaviors. Behaves as one Behavior until a defined
Event occurs before switching to a new Behavior. The switch function will recursively

process the Event to continually change Behavior.

when, threshold, while :: Behavior Bool —> Event ()

These functions produce Events based off of Behaviors over Booleans. The functions
when and threshold add Just to the output Event when the Behavior changes from False

to True, while adds Just to the output Event whilst the Behavior is True.

