module gradLemma where import equivProp import BoolEqBool corrstId : (A : U) (a : A) -> prop (fiber A A (id A) a) corrstId A a v0 v1 = compInv (pathTo A a) (sId A a) v0 v1 (tId A a v0) (tId A a v1) corr2stId : (A : U) (h : A -> A) (ph : (x : A) -> Id A (h x) x) (a : A) -> prop (fiber A A h a) corr2stId A h ph a = substInv (A -> A) (\h -> prop (fiber A A h a)) h (id A) rem (corrstId A a) where rem : Id (A -> A) h (id A) rem = funExt A (\_ -> A) h (id A) ph gradLemma : (A B : U) (f : A -> B) (g : B -> A) -> section A B f g -> retract A B f g -> isEquiv A B f gradLemma A B f g sfg rfg = isEquivSection A B f g sfg rem where injf : injective A B f injf = retractInj A B f g rfg rem : (b : B) -> prop (Sigma A (\a -> Id B (f a) b)) rem b z0 z1 = rem5 where E : A -> U E a = Id B (f a) b F : A -> U F a = Id A (g (f a)) (g b) G : A -> U G a = Id B (f (g (f a))) (f (g b)) cg : (a:A) -> E a -> F a cg a = mapOnPath B A g (f a) b cf : (a:A) -> F a -> G a cf a = mapOnPath A B f (g (f a)) (g b) cfg : (a:A) -> E a -> G a cfg a = mapOnPath B B (\ x -> f (g x)) (f a) b pcf : Sigma A F -> Sigma A G pcf z = (z.1, cf z.1 z.2) pcg : Sigma A E -> Sigma A F pcg z = (z.1, cg z.1 z.2) fg : B -> B fg y = f (g y) pc : (u:B -> B) -> Sigma A E -> Sigma A (\ a -> Id B (u (f a)) (u b)) pc u z = (z.1, mapOnPath B B u (f z.1) b z.2) rem1 : prop (Sigma A F) rem1 = corr2stId A (\ x -> g (f x)) rfg (g b) rem2 : Id (Sigma A F) (pcg z0) (pcg z1) rem2 = rem1 (pcg z0) (pcg z1) rem3 : Id (Sigma A G) (pcf (pcg z0)) (pcf (pcg z1)) rem3 = mapOnPath (Sigma A F) (Sigma A G) pcf (pcg z0) (pcg z1) rem2 rem4 : Id (B -> B) fg (id B) rem4 = funExt B (\ _ -> B) fg (id B) sfg rem5 : Id (Sigma A E) (pc (id B) z0) (pc (id B) z1) rem5 = subst (B->B) (\ u -> Id (Sigma A (\ x -> Id B (u (f x)) (u b))) (pc u z0) (pc u z1)) fg (id B) rem4 rem3 -- isomorphic types are equal isoId : (A B:U) -> (f : A -> B) (g : B -> A) -> section A B f g -> retract A B f g -> Id U A B isoId A B f g sfg rfg = isEquivEq A B f (gradLemma A B f g sfg rfg) -- some applications of the gradlemma propId : (A B:U) -> prop A -> prop B -> (f : A -> B) (g : B -> A) -> Id U A B propId A B pA pB f g = isEquivEq A B f (gradLemma A B f g sfg rfg) where sfg : (b:B) -> Id B (f (g b)) b sfg b = pB (f (g b)) b rfg : (a:A) -> Id A (g (f a)) a rfg a = pA (g (f a)) a