module omega where import univalence Omega : U Omega = Sigma U prop -- Omega is the -set- of truth values -- not trivial and needs the following Lemmas -- if B is a family of proposition over A then Sigma A B -> A is injective lemPInj1 : (A : U) (B : A -> U) -> ((x:A) -> prop (B x)) -> (a0 a1:A) -> (p:Id A a0 a1) -> (b0:B a0) -> (b1:B a1) -> Id (Sigma A B) (a0,b0) (a1,b1) lemPInj1 A B pB a0 a1 p = subst A C a0 a1 p rem where C : A -> U -- (a1:A) -> Id A a0 a1 -> U C a1 = (b0:B a0) -> (b1:B a1) -> Id (Sigma A B) (a0,b0) (a1,b1) rem : C a0 rem b0 b1 = mapOnPath (B a0) (Sigma A B) (\ b -> (a0,b)) b0 b1 (pB a0 b0 b1) lemPropInj : (A : U) (B : A -> U) -> ((x:A) -> prop (B x)) -> injective (Sigma A B) A (\ z -> z.1) lemPropInj A B pB z0 z1 p = lemPInj1 A B pB z0.1 z1.1 p z0.2 z1.2 lemPInj2 : (A : U) (B : A -> U) -> (pB: (x:A) -> prop (B x)) -> (z:Sigma A B) -> Id (Id (Sigma A B) z z) (refl (Sigma A B) z) (lemPropInj A B pB z z (refl A z.1)) lemPInj2 A B pB z = rem where T : U T = Sigma A B a:A a = z.1 b : B a b = z.2 L : U L = Id T z z C : A -> U C a1 = (b0 : B a) -> (b1:B a1) -> Id T (z.1,b0) (a1,b1) rem2 : C a rem2 b0 b1 = mapOnPath (B a) T (\ b -> (z.1,b)) b0 b1 (pB a b0 b1) rem1 : Id (C a) rem2 (lemPInj1 A B pB a a (refl A a)) rem1 = substeq A C a rem2 Lb : U Lb = Id (B a) b b rem4 : Id Lb (refl (B a) b) (pB a b b) rem4 = propUIP (B a) (pB a) b b (refl (B a) b) (pB a b b) rem3 : Id L (mapOnPath (B a) T (\ b -> (a,b)) b b (refl (B a) b)) (rem2 b b) rem3 = mapOnPath Lb L (mapOnPath (B a) T (\ b -> (a,b)) b b) (refl (B a) b) (pB a b b) rem4 rem5 : Id ((b1 : B a) -> Id T (a,b) (a,b1)) (rem2 b) (lemPInj1 A B pB a a (refl A a) b) rem5 = appEq (B a) (\ b0 -> (b1 : B a) -> Id T (a,b0) (a,b1)) b rem2 (lemPInj1 A B pB a a (refl A a)) rem1 rem6 : Id L (rem2 b b) (lemPInj1 A B pB a a (refl A a) b b) rem6 = appEq (B a) (\ b1 -> Id T (a,b) (a,b1)) b (rem2 b) (lemPInj1 A B pB a a (refl A a) b) rem5 rem : Id L (refl T (a,b)) (lemPInj1 A B pB a a (refl A a) b b) rem = comp L (refl T (a,b)) (rem2 b b) (lemPInj1 A B pB a a (refl A a) b b) rem3 rem6 -- we should be able to deduce from all this that Omega is a set isTrue : Omega -> U isTrue z = z.1 lemIsTrue : (x y : Omega) -> (isTrue x -> isTrue y) -> (isTrue y -> isTrue x) -> Id Omega x y lemIsTrue x y f g = injf x y rem where injf : injective Omega U isTrue injf = lemPropInj U prop propIsProp rem : Id U (isTrue x) (isTrue y) rem = propId (isTrue x) (isTrue y) x.2 y.2 f g lemInj : (A B : U) (f : A -> B) -> (injf : injective A B f) -> ((x:A) -> Id (Id A x x) (refl A x) (injf x x (refl B (f x)))) -> (x y : A) -> (p:Id A x y) -> Id (Id A x y) p (injf x y (mapOnPath A B f x y p)) lemInj A B f injf h x = J A x (\ y p -> Id (Id A x y) p (injf x y (mapOnPath A B f x y p))) (h x) omegaIsSet : set Omega omegaIsSet = rem4 where rem : (A:U) -> prop (prop A) rem = propIsProp g : (x:Omega) -> prop (isTrue x) g x = x.2 injf : injective Omega U isTrue injf = lemPropInj U prop rem rem1 : (z:Omega) -> Id (Id Omega z z) (refl Omega z) (injf z z (refl U (isTrue z))) rem1 = lemPInj2 U prop rem rem2 : (x y : Omega) -> (p : Id Omega x y) -> Id (Id Omega x y) p (injf x y (mapOnPath Omega U isTrue x y p)) rem2 = lemInj Omega U isTrue injf rem1 rem3 : (x y : Omega) -> prop (Id U (isTrue x) (isTrue y)) rem3 x y = idPropIsProp (isTrue x) (isTrue y) (g x) (g y) rem4 : (x y : Omega) -> (p q : Id Omega x y) -> Id (Id Omega x y) p q rem4 x y p q = compDown (Id Omega x y) p (injf x y (h p)) q (injf x y (h q)) (rem2 x y p) (rem2 x y q) rem8 where h : Id Omega x y -> Id U (isTrue x) (isTrue y) h = mapOnPath Omega U isTrue x y rem5 : Id (Id U (isTrue x) (isTrue y)) (h p) (h q) rem5 = rem3 x y (h p) (h q) rem8 : Id (Id Omega x y) (injf x y (h p)) (injf x y (h q)) rem8 = mapOnPath (Id U (isTrue x) (isTrue y)) (Id Omega x y) (injf x y) (h p) (h q) rem5