/* * CXSPARSE: a Concise Sparse Matrix package - Extended. * Copyright (c) 2006-2009, Timothy A. Davis. * http://www.cise.ufl.edu/research/sparse/CXSparse * * CXSparse is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * CXSparse is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this Module; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "cs.h" /* compute nnz(V) = S->lnz, S->pinv, S->leftmost, S->m2 from A and S->parent */ static CS_INT cs_vcount (const cs *A, css *S) { CS_INT i, k, p, pa, n = A->n, m = A->m, *Ap = A->p, *Ai = A->i, *next, *head, *tail, *nque, *pinv, *leftmost, *w, *parent = S->parent ; S->pinv = pinv = cs_malloc (m+n, sizeof (CS_INT)) ; /* allocate pinv, */ S->leftmost = leftmost = cs_malloc (m, sizeof (CS_INT)) ; /* and leftmost */ w = cs_malloc (m+3*n, sizeof (CS_INT)) ; /* get workspace */ if (!pinv || !w || !leftmost) { cs_free (w) ; /* pinv and leftmost freed later */ return (0) ; /* out of memory */ } next = w ; head = w + m ; tail = w + m + n ; nque = w + m + 2*n ; for (k = 0 ; k < n ; k++) head [k] = -1 ; /* queue k is empty */ for (k = 0 ; k < n ; k++) tail [k] = -1 ; for (k = 0 ; k < n ; k++) nque [k] = 0 ; for (i = 0 ; i < m ; i++) leftmost [i] = -1 ; for (k = n-1 ; k >= 0 ; k--) { for (p = Ap [k] ; p < Ap [k+1] ; p++) { leftmost [Ai [p]] = k ; /* leftmost[i] = min(find(A(i,:)))*/ } } for (i = m-1 ; i >= 0 ; i--) /* scan rows in reverse order */ { pinv [i] = -1 ; /* row i is not yet ordered */ k = leftmost [i] ; if (k == -1) continue ; /* row i is empty */ if (nque [k]++ == 0) tail [k] = i ; /* first row in queue k */ next [i] = head [k] ; /* put i at head of queue k */ head [k] = i ; } S->lnz = 0 ; S->m2 = m ; for (k = 0 ; k < n ; k++) /* find row permutation and nnz(V)*/ { i = head [k] ; /* remove row i from queue k */ S->lnz++ ; /* count V(k,k) as nonzero */ if (i < 0) i = S->m2++ ; /* add a fictitious row */ pinv [i] = k ; /* associate row i with V(:,k) */ if (--nque [k] <= 0) continue ; /* skip if V(k+1:m,k) is empty */ S->lnz += nque [k] ; /* nque [k] is nnz (V(k+1:m,k)) */ if ((pa = parent [k]) != -1) /* move all rows to parent of k */ { if (nque [pa] == 0) tail [pa] = tail [k] ; next [tail [k]] = head [pa] ; head [pa] = next [i] ; nque [pa] += nque [k] ; } } for (i = 0 ; i < m ; i++) if (pinv [i] < 0) pinv [i] = k++ ; cs_free (w) ; return (1) ; } /* symbolic ordering and analysis for QR or LU */ css *cs_sqr (CS_INT order, const cs *A, CS_INT qr) { CS_INT n, k, ok = 1, *post ; css *S ; if (!CS_CSC (A)) return (NULL) ; /* check inputs */ n = A->n ; S = cs_calloc (1, sizeof (css)) ; /* allocate result S */ if (!S) return (NULL) ; /* out of memory */ S->q = cs_amd (order, A) ; /* fill-reducing ordering */ if (order && !S->q) return (cs_sfree (S)) ; if (qr) /* QR symbolic analysis */ { cs *C = order ? cs_permute (A, NULL, S->q, 0) : ((cs *) A) ; S->parent = cs_etree (C, 1) ; /* etree of C'*C, where C=A(:,q) */ post = cs_post (S->parent, n) ; S->cp = cs_counts (C, S->parent, post, 1) ; /* col counts chol(C'*C) */ cs_free (post) ; ok = C && S->parent && S->cp && cs_vcount (C, S) ; if (ok) for (S->unz = 0, k = 0 ; k < n ; k++) S->unz += S->cp [k] ; ok = ok && S->lnz >= 0 && S->unz >= 0 ; /* CS_INT overflow guard */ if (order) cs_spfree (C) ; } else { S->unz = 4*(A->p [n]) + n ; /* for LU factorization only, */ S->lnz = S->unz ; /* guess nnz(L) and nnz(U) */ } return (ok ? S : cs_sfree (S)) ; /* return result S */ }