/* -- translated by f2c (version 20100827). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b8 = 0.; static doublereal c_b14 = -1.; /* > \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarit y transformation (unblocked algorithm). =========== DOCUMENTATION =========== Online html documentation available at http://www.netlib.org/lapack/explore-html/ > \htmlonly > Download DSYTD2 + dependencies > > [TGZ] > > [ZIP] > > [TXT] > \endhtmlonly Definition: =========== SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO ) CHARACTER UPLO INTEGER INFO, LDA, N DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ) > \par Purpose: ============= > > \verbatim > > DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal > form T by an orthogonal similarity transformation: Q**T * A * Q = T. > \endverbatim Arguments: ========== > \param[in] UPLO > \verbatim > UPLO is CHARACTER*1 > Specifies whether the upper or lower triangular part of the > symmetric matrix A is stored: > = 'U': Upper triangular > = 'L': Lower triangular > \endverbatim > > \param[in] N > \verbatim > N is INTEGER > The order of the matrix A. N >= 0. > \endverbatim > > \param[in,out] A > \verbatim > A is DOUBLE PRECISION array, dimension (LDA,N) > On entry, the symmetric matrix A. If UPLO = 'U', the leading > n-by-n upper triangular part of A contains the upper > triangular part of the matrix A, and the strictly lower > triangular part of A is not referenced. If UPLO = 'L', the > leading n-by-n lower triangular part of A contains the lower > triangular part of the matrix A, and the strictly upper > triangular part of A is not referenced. > On exit, if UPLO = 'U', the diagonal and first superdiagonal > of A are overwritten by the corresponding elements of the > tridiagonal matrix T, and the elements above the first > superdiagonal, with the array TAU, represent the orthogonal > matrix Q as a product of elementary reflectors; if UPLO > = 'L', the diagonal and first subdiagonal of A are over- > written by the corresponding elements of the tridiagonal > matrix T, and the elements below the first subdiagonal, with > the array TAU, represent the orthogonal matrix Q as a product > of elementary reflectors. See Further Details. > \endverbatim > > \param[in] LDA > \verbatim > LDA is INTEGER > The leading dimension of the array A. LDA >= max(1,N). > \endverbatim > > \param[out] D > \verbatim > D is DOUBLE PRECISION array, dimension (N) > The diagonal elements of the tridiagonal matrix T: > D(i) = A(i,i). > \endverbatim > > \param[out] E > \verbatim > E is DOUBLE PRECISION array, dimension (N-1) > The off-diagonal elements of the tridiagonal matrix T: > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. > \endverbatim > > \param[out] TAU > \verbatim > TAU is DOUBLE PRECISION array, dimension (N-1) > The scalar factors of the elementary reflectors (see Further > Details). > \endverbatim > > \param[out] INFO > \verbatim > INFO is INTEGER > = 0: successful exit > < 0: if INFO = -i, the i-th argument had an illegal value. > \endverbatim Authors: ======== > \author Univ. of Tennessee > \author Univ. of California Berkeley > \author Univ. of Colorado Denver > \author NAG Ltd. > \date September 2012 > \ingroup doubleSYcomputational > \par Further Details: ===================== > > \verbatim > > If UPLO = 'U', the matrix Q is represented as a product of elementary > reflectors > > Q = H(n-1) . . . H(2) H(1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in > A(1:i-1,i+1), and tau in TAU(i). > > If UPLO = 'L', the matrix Q is represented as a product of elementary > reflectors > > Q = H(1) H(2) . . . H(n-1). > > Each H(i) has the form > > H(i) = I - tau * v * v**T > > where tau is a real scalar, and v is a real vector with > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), > and tau in TAU(i). > > The contents of A on exit are illustrated by the following examples > with n = 5: > > if UPLO = 'U': if UPLO = 'L': > > ( d e v2 v3 v4 ) ( d ) > ( d e v3 v4 ) ( e d ) > ( d e v4 ) ( v1 e d ) > ( d e ) ( v1 v2 e d ) > ( d ) ( v1 v2 v3 e d ) > > where d and e denote diagonal and off-diagonal elements of T, and vi > denotes an element of the vector defining H(i). > \endverbatim > ===================================================================== Subroutine */ int igraphdsytd2_(char *uplo, integer *n, doublereal *a, integer * lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer i__; extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, integer *); doublereal taui; extern /* Subroutine */ int igraphdsyr2_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal alpha; extern logical igraphlsame_(char *, char *); extern /* Subroutine */ int igraphdaxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int igraphdsymv_(char *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), igraphdlarfg_(integer *, doublereal *, doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer * , ftnlen); /* -- LAPACK computational routine (version 3.4.2) -- -- LAPACK is a software package provided by Univ. of Tennessee, -- -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- September 2012 ===================================================================== Test the input parameters Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tau; /* Function Body */ *info = 0; upper = igraphlsame_(uplo, "U"); if (! upper && ! igraphlsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); igraphxerbla_("DSYTD2", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } if (upper) { /* Reduce the upper triangle of A */ for (i__ = *n - 1; i__ >= 1; --i__) { /* Generate elementary reflector H(i) = I - tau * v * v**T to annihilate A(1:i-1,i+1) */ igraphdlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui); e[i__] = a[i__ + (i__ + 1) * a_dim1]; if (taui != 0.) { /* Apply H(i) from both sides to A(1:i,1:i) */ a[i__ + (i__ + 1) * a_dim1] = 1.; /* Compute x := tau * A * v storing x in TAU(1:i) */ igraphdsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1); /* Compute w := x - 1/2 * tau * (x**T * v) * v */ alpha = taui * -.5 * igraphddot_(&i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1], &c__1); igraphdaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ 1], &c__1); /* Apply the transformation as a rank-2 update: A := A - v * w**T - w * v**T */ igraphdsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[1], &c__1, &a[a_offset], lda); a[i__ + (i__ + 1) * a_dim1] = e[i__]; } d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1]; tau[i__] = taui; /* L10: */ } d__[1] = a[a_dim1 + 1]; } else { /* Reduce the lower triangle of A */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) = I - tau * v * v**T to annihilate A(i+2:n,i) */ i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; igraphdlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * a_dim1], &c__1, &taui); e[i__] = a[i__ + 1 + i__ * a_dim1]; if (taui != 0.) { /* Apply H(i) from both sides to A(i+1:n,i+1:n) */ a[i__ + 1 + i__ * a_dim1] = 1.; /* Compute x := tau * A * v storing y in TAU(i:n-1) */ i__2 = *n - i__; igraphdsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[ i__], &c__1); /* Compute w := x - 1/2 * tau * (x**T * v) * v */ i__2 = *n - i__; alpha = taui * -.5 * igraphddot_(&i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); i__2 = *n - i__; igraphdaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &c__1); /* Apply the transformation as a rank-2 update: A := A - v * w**T - w * v**T */ i__2 = *n - i__; igraphdsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda); a[i__ + 1 + i__ * a_dim1] = e[i__]; } d__[i__] = a[i__ + i__ * a_dim1]; tau[i__] = taui; /* L20: */ } d__[*n] = a[*n + *n * a_dim1]; } return 0; /* End of DSYTD2 */ } /* igraphdsytd2_ */