/* * This file contains the vertex reordering routines. * * Copyright (C) 2002 Sampo Niskanen, Patric Östergård. * Licensed under the GNU GPL, read the file LICENSE for details. */ #include "reorder.h" #include #include #include /* * reorder_set() * * Reorders the set s with a function i -> order[i]. * * Note: Assumes that order is the same size as SET_MAX_SIZE(s). */ void reorder_set(set_t s,int *order) { set_t tmp; int i,j; setelement e; ASSERT(reorder_is_bijection(order,SET_MAX_SIZE(s))); tmp=set_new(SET_MAX_SIZE(s)); for (i=0; i<(SET_MAX_SIZE(s)/ELEMENTSIZE); i++) { e=s[i]; if (e==0) continue; for (j=0; j>1; } } if (SET_MAX_SIZE(s)%ELEMENTSIZE) { e=s[i]; for (j=0; j<(SET_MAX_SIZE(s)%ELEMENTSIZE); j++) { if (e&1) { SET_ADD_ELEMENT(tmp,order[i*ELEMENTSIZE+j]); } e = e>>1; } } set_copy(s,tmp); set_free(tmp); return; } /* * reorder_graph() * * Reorders the vertices in the graph with function i -> order[i]. * * Note: Assumes that order is of size g->n. */ void reorder_graph(graph_t *g, int *order) { int i; set_t *tmp_e; int *tmp_w; ASSERT(reorder_is_bijection(order,g->n)); tmp_e=malloc(g->n * sizeof(set_t)); tmp_w=malloc(g->n * sizeof(int)); for (i=0; in; i++) { reorder_set(g->edges[i],order); tmp_e[order[i]]=g->edges[i]; tmp_w[order[i]]=g->weights[i]; } for (i=0; in; i++) { g->edges[i]=tmp_e[i]; g->weights[i]=tmp_w[i]; } free(tmp_e); free(tmp_w); return; } /* * reorder_duplicate() * * Returns a newly allocated duplicate of the given ordering. */ int *reorder_duplicate(int *order,int n) { int *new; new=malloc(n*sizeof(int)); memcpy(new,order,n*sizeof(int)); return new; } /* * reorder_invert() * * Inverts the given ordering so that new[old[i]]==i. * * Note: Asserts that order is a bijection. */ void reorder_invert(int *order,int n) { int *new; int i; ASSERT(reorder_is_bijection(order,n)); new=malloc(n*sizeof(int)); for (i=0; i {0,...,n-1}. * * Returns TRUE if it is a bijection, FALSE otherwise. */ boolean reorder_is_bijection(int *order,int n) { boolean *used; int i; used=calloc(n,sizeof(boolean)); for (i=0; i=n) { free(used); return FALSE; } if (used[order[i]]) { free(used); return FALSE; } used[order[i]]=TRUE; } for (i=0; in); } /* * reorder_by_reverse() * * Returns a reverse identity ordering. */ int *reorder_by_reverse(graph_t *g,boolean weighted) { int i; int *order; order=malloc(g->n * sizeof(int)); for (i=0; i < g->n; i++) order[i]=g->n-i-1; return order; } /* * reorder_by_greedy_coloring() * * Equivalent to reorder_by_weighted_greedy_coloring or * reorder_by_unweighted_greedy_coloring according to the value of weighted. */ int *reorder_by_greedy_coloring(graph_t *g,boolean weighted) { if (weighted) return reorder_by_weighted_greedy_coloring(g,weighted); else return reorder_by_unweighted_greedy_coloring(g,weighted); } /* * reorder_by_unweighted_greedy_coloring() * * Returns an ordering for the graph g by coloring the clique one * color at a time, always adding the vertex of largest degree within * the uncolored graph, and numbering these vertices 0, 1, ... * * Experimentally efficient for use with unweighted graphs. */ int *reorder_by_unweighted_greedy_coloring(graph_t *g,boolean weighted) { int i,j,v; boolean *tmp_used; int *degree; /* -1 for used vertices */ int *order; int maxdegree,maxvertex=0; boolean samecolor; tmp_used=calloc(g->n,sizeof(boolean)); degree=calloc(g->n,sizeof(int)); order=calloc(g->n,sizeof(int)); for (i=0; i < g->n; i++) { for (j=0; j < g->n; j++) { ASSERT(!((i==j) && GRAPH_IS_EDGE(g,i,j))); if (GRAPH_IS_EDGE(g,i,j)) degree[i]++; } } v=0; while (v < g->n) { /* Reset tmp_used. */ memset(tmp_used,0,g->n * sizeof(boolean)); do { /* Find vertex to be colored. */ maxdegree=0; samecolor=FALSE; for (i=0; i < g->n; i++) { if (!tmp_used[i] && degree[i] >= maxdegree) { maxvertex=i; maxdegree=degree[i]; samecolor=TRUE; } } if (samecolor) { order[v]=maxvertex; degree[maxvertex]=-1; v++; /* Mark neighbors not to color with same * color and update neighbor degrees. */ for (i=0; i < g->n; i++) { if (GRAPH_IS_EDGE(g,maxvertex,i)) { tmp_used[i]=TRUE; degree[i]--; } } } } while (samecolor); } free(tmp_used); free(degree); return order; } /* * reorder_by_weighted_greedy_coloring() * * Returns an ordering for the graph g by coloring the clique one * color at a time, always adding the vertex that (in order of importance): * 1. has the minimum weight in the remaining graph * 2. has the largest sum of weights surrounding the vertex * * Experimentally efficient for use with weighted graphs. */ int *reorder_by_weighted_greedy_coloring(graph_t *g, boolean weighted) { int i,j,p=0; int cnt; int *nwt; /* Sum of surrounding vertices' weights */ int min_wt,max_nwt; boolean *used; int *order; nwt=malloc(g->n * sizeof(int)); order=malloc(g->n * sizeof(int)); used=calloc(g->n,sizeof(boolean)); for (i=0; i < g->n; i++) { nwt[i]=0; for (j=0; j < g->n; j++) if (GRAPH_IS_EDGE(g, i, j)) nwt[i] += g->weights[j]; } for (cnt=0; cnt < g->n; cnt++) { min_wt=INT_MAX; max_nwt=-1; for (i=g->n-1; i>=0; i--) if ((!used[i]) && (g->weights[i] < min_wt)) min_wt=g->weights[i]; for (i=g->n-1; i>=0; i--) { if (used[i] || (g->weights[i] > min_wt)) continue; if (nwt[i] > max_nwt) { max_nwt=nwt[i]; p=i; } } order[cnt]=p; used[p]=TRUE; for (j=0; j < g->n; j++) if ((!used[j]) && (GRAPH_IS_EDGE(g, p, j))) nwt[j] -= g->weights[p]; } free(nwt); free(used); ASSERT(reorder_is_bijection(order,g->n)); return order; } /* * reorder_by_degree() * * Returns a reordering of the graph g so that the vertices with largest * degrees (most neighbors) are first. */ int *reorder_by_degree(graph_t *g, boolean weighted) { int i,j,v; int *degree; int *order; int maxdegree,maxvertex=0; degree=calloc(g->n,sizeof(int)); order=calloc(g->n,sizeof(int)); for (i=0; i < g->n; i++) { for (j=0; j < g->n; j++) { ASSERT(!((i==j) && GRAPH_IS_EDGE(g,i,j))); if (GRAPH_IS_EDGE(g,i,j)) degree[i]++; } } for (v=0; v < g->n; v++) { maxdegree=0; for (i=0; i < g->n; i++) { if (degree[i] >= maxdegree) { maxvertex=i; maxdegree=degree[i]; } } order[v]=maxvertex; degree[maxvertex]=-1; /* used */ /*** Max. degree withing unselected graph: for (i=0; i < g->n; i++) { if (GRAPH_IS_EDGE(g,maxvertex,i)) degree[i]--; } ***/ } free(degree); return order; } /* * reorder_by_random() * * Returns a random reordering for graph g. * Note: Used the functions rand() and srand() to generate the random * numbers. srand() is re-initialized every time reorder_by_random() * is called using the system time. */ int *reorder_by_random(graph_t *g, boolean weighted) { int i,r; int *new; boolean *used; new=calloc(g->n, sizeof(int)); used=calloc(g->n, sizeof(boolean)); for (i=0; i < g->n; i++) { do { r = igraph_rng_get_integer(igraph_rng_default(), 0, g->n - 1); } while (used[r]); new[i]=r; used[r]=TRUE; } free(used); return new; }