module Hasql.Pipeline.Core where import Hasql.Decoders.All qualified as Decoders import Hasql.Decoders.Result qualified as Decoders.Result import Hasql.Decoders.Results qualified as Decoders.Results import Hasql.Encoders.All qualified as Encoders import Hasql.Encoders.Params qualified as Encoders.Params import Hasql.Errors import Hasql.LibPq14 qualified as Pq import Hasql.Prelude import Hasql.PreparedStatementRegistry qualified as PreparedStatementRegistry import Hasql.Statement qualified as Statement run :: forall a. Pipeline a -> Pq.Connection -> PreparedStatementRegistry.PreparedStatementRegistry -> Bool -> IO (Either SessionError a) run (Pipeline sendQueriesInIO) connection registry integerDatetimes = do runExceptT do enterPipelineMode recvQueries <- sendQueries pipelineSync finallyE recvQueries do recvPipelineSync exitPipelineMode where enterPipelineMode :: ExceptT SessionError IO () enterPipelineMode = runCommand $ Pq.enterPipelineMode connection exitPipelineMode :: ExceptT SessionError IO () exitPipelineMode = runCommand $ Pq.exitPipelineMode connection sendQueries :: ExceptT SessionError IO (ExceptT SessionError IO a) sendQueries = fmap ExceptT $ ExceptT $ sendQueriesInIO connection registry integerDatetimes pipelineSync :: ExceptT SessionError IO () pipelineSync = runCommand $ Pq.pipelineSync connection recvPipelineSync :: ExceptT SessionError IO () recvPipelineSync = runResultsDecoder $ Decoders.Results.single Decoders.Result.pipelineSync runResultsDecoder :: forall a. Decoders.Results.Results a -> ExceptT SessionError IO a runResultsDecoder decoder = ExceptT $ fmap (first PipelineError) $ Decoders.Results.run decoder connection integerDatetimes runCommand :: IO Bool -> ExceptT SessionError IO () runCommand action = lift action >>= \case True -> pure () False -> ExceptT (Left . PipelineError . ClientError <$> Pq.errorMessage connection) -- | -- Composable abstraction over the execution of queries in [the pipeline mode](https://www.postgresql.org/docs/current/libpq-pipeline-mode.html). -- -- It allows you to issue multiple queries to the server in much fewer network transactions. -- If the amounts of sent and received data do not surpass the buffer sizes in the driver and on the server it will be just a single roundtrip. -- Typically the buffer size is 8KB. -- -- This execution mode is much more efficient than running queries directly from 'Hasql.Session.Session', because in session every statement execution involves a dedicated network roundtrip. -- An obvious question rises then: why not execute all queries like that? -- -- In situations where the parameters depend on the result of another query it is impossible to execute them in parallel, because the client needs to receive the results of one query before sending the request to execute the next. -- This reasoning is essentially the same as the one for the difference between 'Applicative' and 'Monad'. -- That\'s why 'Pipeline' does not have the 'Monad' instance. -- -- To execute 'Pipeline' lift it into 'Hasql.Session.Session' via 'Hasql.Session.pipeline'. -- -- __Attention__: using this feature requires \"libpq\" of version >14. -- -- == __Examples__ -- -- === Insert-Many or Batch-Insert -- -- You can use pipeline to turn a single-row insert query into an efficient multi-row insertion session. -- In effect this should be comparable in performance to issuing a single multi-row insert statement. -- -- Given the following definition in a Statements module: -- -- @ -- insertOrder :: 'Hasql.Statement.Statement' OrderDetails OrderId -- @ -- -- You can lift it into the following session -- -- @ -- insertOrders :: [OrderDetails] -> 'Hasql.Session.Session' [OrderId] -- insertOrders songs = -- 'Hasql.Session.pipeline' $ -- forM songs $ \song -> -- 'Hasql.Pipeline.statement' song Statements.insertOrder -- @ -- -- === Combining Queries -- -- Given the following definitions in a Statements module: -- -- @ -- selectOrderDetails :: 'Hasql.Statement.Statement' OrderId (Maybe OrderDetails) -- selectOrderProducts :: 'Hasql.Statement.Statement' OrderId [OrderProduct] -- selectOrderFinancialTransactions :: 'Hasql.Statement.Statement' OrderId [FinancialTransaction] -- @ -- -- You can combine them into a session using the `ApplicativeDo` extension as follows: -- -- @ -- selectEverythingAboutOrder :: OrderId -> 'Hasql.Session.Session' (Maybe OrderDetails, [OrderProduct], [FinancialTransaction]) -- selectEverythingAboutOrder orderId = -- 'Hasql.Session.pipeline' $ do -- details <- 'Hasql.Pipeline.statement' orderId Statements.selectOrderDetails -- products <- 'Hasql.Pipeline.statement' orderId Statements.selectOrderProducts -- transactions <- 'Hasql.Pipeline.statement' orderId Statements.selectOrderFinancialTransactions -- pure (details, products, transactions) -- @ newtype Pipeline a = Pipeline ( Pq.Connection -> PreparedStatementRegistry.PreparedStatementRegistry -> Bool -> IO (Either SessionError (IO (Either SessionError a))) ) deriving (Functor) instance Applicative Pipeline where pure a = Pipeline (\_ _ _ -> pure (Right (pure (Right a)))) Pipeline lSend <*> Pipeline rSend = Pipeline \conn reg integerDatetimes -> lSend conn reg integerDatetimes >>= \case Left sendErr -> pure (Left sendErr) Right lRecv -> rSend conn reg integerDatetimes <&> \case Left sendErr -> Left sendErr Right rRecv -> Right (liftA2 (<*>) lRecv rRecv) -- | -- Execute a statement in pipelining mode. statement :: params -> Statement.Statement params result -> Pipeline result statement params (Statement.Statement sql (Encoders.Params encoder) (Decoders.Result decoder) preparable) = Pipeline run where run connection registry integerDatetimes = if preparable then runPrepared else runUnprepared where runPrepared = runExceptT do (key, keyRecv) <- ExceptT resolvePreparedStatementKey queryRecv <- ExceptT (sendQuery key) pure (keyRecv *> queryRecv) where (oidList, valueAndFormatList) = Encoders.Params.compilePreparedStatementData encoder integerDatetimes params resolvePreparedStatementKey = PreparedStatementRegistry.update localKey onNewRemoteKey onOldRemoteKey registry where localKey = PreparedStatementRegistry.LocalKey sql oidList onNewRemoteKey key = do sent <- Pq.sendPrepare connection key sql (mfilter (not . null) (Just oidList)) if sent then pure (True, Right (key, recv)) else (False,) . Left . commandToSessionError . ClientError <$> Pq.errorMessage connection where recv = fmap (first commandToSessionError) $ (<*) <$> Decoders.Results.run (Decoders.Results.single Decoders.Result.noResult) connection integerDatetimes <*> Decoders.Results.run Decoders.Results.dropRemainders connection integerDatetimes onOldRemoteKey key = pure (Right (key, pure (Right ()))) sendQuery key = Pq.sendQueryPrepared connection key valueAndFormatList Pq.Binary >>= \case False -> Left . commandToSessionError . ClientError <$> Pq.errorMessage connection True -> pure (Right recv) where recv = fmap (first commandToSessionError) $ (<*) <$> Decoders.Results.run decoder connection integerDatetimes <*> Decoders.Results.run Decoders.Results.dropRemainders connection integerDatetimes runUnprepared = Pq.sendQueryParams connection sql (Encoders.Params.compileUnpreparedStatementData encoder integerDatetimes params) Pq.Binary >>= \case False -> Left . commandToSessionError . ClientError <$> Pq.errorMessage connection True -> pure (Right recv) where recv = fmap (first commandToSessionError) $ (<*) <$> Decoders.Results.run decoder connection integerDatetimes <*> Decoders.Results.run Decoders.Results.dropRemainders connection integerDatetimes commandToSessionError = QueryError sql (Encoders.Params.renderReadable encoder params)