

Hybrid Type Checking

An implementation of λH

David Waern
Rickard Nilsson

Hybrid Type Checking

 Cormac Flanagan POPL 2006

 A combination of Static and Dynamic checking

If a specification can't be checked statically, it will be checked dynamically

 Dynamic Type Casts

Casts are inserted when static checking fails to prove or disprove

Hybrid Type Checking

 Precise specifications are supported

 Advanced specifications and static analyses can be tried out

 Selectable trade-off between compilation speed and coverage

λH

 Typed λ-calculus

 Refinement types

Natural = {x:Int | x > 0}

 Dependent function types

f :: m:Int -> n:Natural -> {x: Int | x = m + n}

 Undecidable type checking

Implementation

 Follows Flanagan's description closely

 Haskell

Parser

 Parsec parser combinator library

 Tested with QuickCheck

Type checker / Compiler

 Basic structural static type checking

 Actual checking done in subtyping function

 Casts injected if sub typer fails

Subtyping

 Simple rejections

 Accepts types with structurally equal predicates

 Refinement predicate evaluation for applications of constants

 Easily extendable

 Possible to plugin a theorem prover

Interpreter

 Evaluates inserted casts, which may fail

Demonstration

