// Monocypher version 4.0.0 // // This file is dual-licensed. Choose whichever licence you want from // the two licences listed below. // // The first licence is a regular 2-clause BSD licence. The second licence // is the CC-0 from Creative Commons. It is intended to release Monocypher // to the public domain. The BSD licence serves as a fallback option. // // SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0 // // ------------------------------------------------------------------------ // // Copyright (c) 2017-2019, Loup Vaillant // All rights reserved. // // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // ------------------------------------------------------------------------ // // Written in 2017-2019 by Loup Vaillant // // To the extent possible under law, the author(s) have dedicated all copyright // and related neighboring rights to this software to the public domain // worldwide. This software is distributed without any warranty. // // You should have received a copy of the CC0 Public Domain Dedication along // with this software. If not, see // #ifndef MONOCYPHER_H #define MONOCYPHER_H #include #include #ifdef MONOCYPHER_CPP_NAMESPACE namespace MONOCYPHER_CPP_NAMESPACE { #elif defined(__cplusplus) extern "C" { #endif // Constant time comparisons // ------------------------- // Return 0 if a and b are equal, -1 otherwise int crypto_verify16(const uint8_t a[16], const uint8_t b[16]); int crypto_verify32(const uint8_t a[32], const uint8_t b[32]); int crypto_verify64(const uint8_t a[64], const uint8_t b[64]); // Erase sensitive data // -------------------- void crypto_wipe(void *secret, size_t size); // Authenticated encryption // ------------------------ void crypto_aead_lock(uint8_t *cipher_text, uint8_t mac [16], const uint8_t key [32], const uint8_t nonce[24], const uint8_t *ad, size_t ad_size, const uint8_t *plain_text, size_t text_size); int crypto_aead_unlock(uint8_t *plain_text, const uint8_t mac [16], const uint8_t key [32], const uint8_t nonce[24], const uint8_t *ad, size_t ad_size, const uint8_t *cipher_text, size_t text_size); // Authenticated stream // -------------------- typedef struct { uint64_t counter; uint8_t key[32]; uint8_t nonce[8]; } crypto_aead_ctx; void crypto_aead_init_x(crypto_aead_ctx *ctx, const uint8_t key[32], const uint8_t nonce[24]); void crypto_aead_init_djb(crypto_aead_ctx *ctx, const uint8_t key[32], const uint8_t nonce[8]); void crypto_aead_init_ietf(crypto_aead_ctx *ctx, const uint8_t key[32], const uint8_t nonce[12]); void crypto_aead_write(crypto_aead_ctx *ctx, uint8_t *cipher_text, uint8_t mac[16], const uint8_t *ad , size_t ad_size, const uint8_t *plain_text, size_t text_size); int crypto_aead_read(crypto_aead_ctx *ctx, uint8_t *plain_text, const uint8_t mac[16], const uint8_t *ad , size_t ad_size, const uint8_t *cipher_text, size_t text_size); // General purpose hash (BLAKE2b) // ------------------------------ // Direct interface void crypto_blake2b(uint8_t *hash, size_t hash_size, const uint8_t *message, size_t message_size); void crypto_blake2b_keyed(uint8_t *hash, size_t hash_size, const uint8_t *key, size_t key_size, const uint8_t *message, size_t message_size); // Incremental interface typedef struct { // Do not rely on the size or contents of this type, // for they may change without notice. uint64_t hash[8]; uint64_t input_offset[2]; uint64_t input[16]; size_t input_idx; size_t hash_size; } crypto_blake2b_ctx; void crypto_blake2b_init(crypto_blake2b_ctx *ctx, size_t hash_size); void crypto_blake2b_keyed_init(crypto_blake2b_ctx *ctx, size_t hash_size, const uint8_t *key, size_t key_size); void crypto_blake2b_update(crypto_blake2b_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_blake2b_final(crypto_blake2b_ctx *ctx, uint8_t *hash); // Password key derivation (Argon2) // -------------------------------- #define CRYPTO_ARGON2_D 0 #define CRYPTO_ARGON2_I 1 #define CRYPTO_ARGON2_ID 2 typedef struct { uint32_t algorithm; // Argon2d, Argon2i, Argon2id uint32_t nb_blocks; // memory hardness, >= 8 * nb_lanes uint32_t nb_passes; // CPU hardness, >= 1 (>= 3 recommended for Argon2i) uint32_t nb_lanes; // parallelism level (single threaded anyway) } crypto_argon2_config; typedef struct { const uint8_t *pass; const uint8_t *salt; uint32_t pass_size; uint32_t salt_size; // 16 bytes recommended } crypto_argon2_inputs; typedef struct { const uint8_t *key; // may be NULL if no key const uint8_t *ad; // may be NULL if no additional data uint32_t key_size; // 0 if no key (32 bytes recommended otherwise) uint32_t ad_size; // 0 if no additional data } crypto_argon2_extras; extern const crypto_argon2_extras crypto_argon2_no_extras; void crypto_argon2(uint8_t *hash, uint32_t hash_size, void *work_area, crypto_argon2_config config, crypto_argon2_inputs inputs, crypto_argon2_extras extras); // Key exchange (X-25519) // ---------------------- // Shared secrets are not quite random. // Hash them to derive an actual shared key. void crypto_x25519_public_key(uint8_t public_key[32], const uint8_t secret_key[32]); void crypto_x25519(uint8_t raw_shared_secret[32], const uint8_t your_secret_key [32], const uint8_t their_public_key [32]); // Conversion to EdDSA void crypto_x25519_to_eddsa(uint8_t eddsa[32], const uint8_t x25519[32]); // scalar "division" // Used for OPRF. Be aware that exponential blinding is less secure // than Diffie-Hellman key exchange. void crypto_x25519_inverse(uint8_t blind_salt [32], const uint8_t private_key[32], const uint8_t curve_point[32]); // "Dirty" versions of x25519_public_key(). // Use with crypto_elligator_rev(). // Leaks 3 bits of the private key. void crypto_x25519_dirty_small(uint8_t pk[32], const uint8_t sk[32]); void crypto_x25519_dirty_fast (uint8_t pk[32], const uint8_t sk[32]); // Signatures // ---------- // EdDSA with curve25519 + BLAKE2b void crypto_eddsa_key_pair(uint8_t secret_key[64], uint8_t public_key[32], uint8_t seed[32]); void crypto_eddsa_sign(uint8_t signature [64], const uint8_t secret_key[64], const uint8_t *message, size_t message_size); int crypto_eddsa_check(const uint8_t signature [64], const uint8_t public_key[32], const uint8_t *message, size_t message_size); // Conversion to X25519 void crypto_eddsa_to_x25519(uint8_t x25519[32], const uint8_t eddsa[32]); // EdDSA building blocks void crypto_eddsa_trim_scalar(uint8_t out[32], const uint8_t in[32]); void crypto_eddsa_reduce(uint8_t reduced[32], const uint8_t expanded[64]); void crypto_eddsa_mul_add(uint8_t r[32], const uint8_t a[32], const uint8_t b[32], const uint8_t c[32]); void crypto_eddsa_scalarbase(uint8_t point[32], const uint8_t scalar[32]); int crypto_eddsa_check_equation(const uint8_t signature[64], const uint8_t public_key[32], const uint8_t h_ram[32]); // Chacha20 // -------- // Specialised hash. // Used to hash X25519 shared secrets. void crypto_chacha20_h(uint8_t out[32], const uint8_t key[32], const uint8_t in [16]); // Unauthenticated stream cipher. // Don't forget to add authentication. uint64_t crypto_chacha20_djb(uint8_t *cipher_text, const uint8_t *plain_text, size_t text_size, const uint8_t key[32], const uint8_t nonce[8], uint64_t ctr); uint32_t crypto_chacha20_ietf(uint8_t *cipher_text, const uint8_t *plain_text, size_t text_size, const uint8_t key[32], const uint8_t nonce[12], uint32_t ctr); uint64_t crypto_chacha20_x(uint8_t *cipher_text, const uint8_t *plain_text, size_t text_size, const uint8_t key[32], const uint8_t nonce[24], uint64_t ctr); // Poly 1305 // --------- // This is a *one time* authenticator. // Disclosing the mac reveals the key. // See crypto_lock() on how to use it properly. // Direct interface void crypto_poly1305(uint8_t mac[16], const uint8_t *message, size_t message_size, const uint8_t key[32]); // Incremental interface typedef struct { // Do not rely on the size or contents of this type, // for they may change without notice. uint8_t c[16]; // chunk of the message size_t c_idx; // How many bytes are there in the chunk. uint32_t r [4]; // constant multiplier (from the secret key) uint32_t pad[4]; // random number added at the end (from the secret key) uint32_t h [5]; // accumulated hash } crypto_poly1305_ctx; void crypto_poly1305_init (crypto_poly1305_ctx *ctx, const uint8_t key[32]); void crypto_poly1305_update(crypto_poly1305_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_poly1305_final (crypto_poly1305_ctx *ctx, uint8_t mac[16]); // Elligator 2 // ----------- // Elligator mappings proper void crypto_elligator_map(uint8_t curve [32], const uint8_t hidden[32]); int crypto_elligator_rev(uint8_t hidden[32], const uint8_t curve [32], uint8_t tweak); // Easy to use key pair generation void crypto_elligator_key_pair(uint8_t hidden[32], uint8_t secret_key[32], uint8_t seed[32]); #ifdef __cplusplus } #endif #endif // MONOCYPHER_H