{-# Language AllowAmbiguousTypes #-} module Data.Semiring.Property ( -- * Properties of pre-semirings & semirings neutral_addition_on , neutral_addition_on' , neutral_multiplication_on , neutral_multiplication_on' , associative_addition_on , associative_multiplication_on , distributive_on -- * Properties of non-unital (near-)semirings , nonunital_on -- * Properties of unital semirings , annihilative_multiplication_on , homomorphism_boolean -- * Properties of cancellative semirings , cancellative_addition_on , cancellative_multiplication_on -- * Properties of commutative semirings , commutative_addition_on , commutative_multiplication_on -- * Properties of distributive semirings , distributive_finite_on , distributive_finite1_on , distributive_cross_on , distributive_cross1_on {- -- * Properties of closed semirings , closed_pstable , closed_paffine , closed_stable , closed_affine , idempotent_star -} ) where import Data.List.NonEmpty (NonEmpty(..)) import Data.Foldable import Data.Semiring import Data.Semigroup.Foldable import Test.Property.Util import qualified Test.Property as Prop ------------------------------------------------------------------------------------ -- Properties of pre-semirings & semirings -- | \( \forall a \in R: (z + a) \sim a \) -- -- A (pre-)semiring with a right-neutral additive unit must satisfy: -- -- @ -- 'neutral_addition' 'mempty' ~~ const True -- @ -- -- Or, equivalently: -- -- @ -- 'mempty' '<>' r ~~ r -- @ -- -- This is a required property. -- neutral_addition_on :: Semigroup r => Rel r -> r -> r -> Bool neutral_addition_on (~~) = Prop.neutral_on (~~) (<>) neutral_addition_on' :: Monoid r => Rel r -> r -> Bool neutral_addition_on' (~~) = Prop.neutral_on (~~) (<>) mempty -- | \( \forall a \in R: (o * a) \sim a \) -- -- A (pre-)semiring with a right-neutral multiplicative unit must satisfy: -- -- @ -- 'neutral_multiplication' 'unit' ~~ const True -- @ -- -- Or, equivalently: -- -- @ -- 'unit' '><' r ~~ r -- @ -- -- This is a required property. -- neutral_multiplication_on :: Semiring r => Rel r -> r -> r -> Bool neutral_multiplication_on (~~) = Prop.neutral_on (~~) (><) neutral_multiplication_on' :: (Monoid r, Semiring r) => Rel r -> r -> Bool neutral_multiplication_on' (~~) = Prop.neutral_on (~~) (><) unit -- | \( \forall a, b, c \in R: (a + b) + c \sim a + (b + c) \) -- -- /R/ must right-associate addition. -- -- This should be verified by the underlying 'Semigroup' instance, -- but is included here for completeness. -- -- This is a required property. -- associative_addition_on :: Semigroup r => Rel r -> r -> r -> r -> Bool associative_addition_on (~~) = Prop.associative_on (~~) (<>) -- | \( \forall a, b, c \in R: (a * b) * c \sim a * (b * c) \) -- -- /R/ must right-associate multiplication. -- -- This is a required property. -- associative_multiplication_on :: Semiring r => Rel r -> r -> r -> r -> Bool associative_multiplication_on (~~) = Prop.associative_on (~~) (><) -- | \( \forall a, b, c \in R: (a + b) * c \sim (a * c) + (b * c) \) -- -- /R/ must right-distribute multiplication. -- -- When /R/ is a functor and the semiring structure is derived from 'Alternative', -- this translates to: -- -- @ -- (a '<|>' b) '*>' c = (a '*>' c) '<|>' (b '*>' c) -- @ -- -- See < https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus >. -- -- This is a required property. -- distributive_on :: Semiring r => Rel r -> r -> r -> r -> Bool distributive_on (~~) = Prop.distributive_on (~~) (<>) (><) ------------------------------------------------------------------------------------ -- Properties of non-unital semirings (aka near-semirings) -- | \( \forall a, b \in R: a * b \sim a * b + b \) -- -- If /R/ is non-unital (i.e. /unit/ is not distinct from /mempty/) then it will instead satisfy -- a right-absorbtion property. -- -- This follows from right-neutrality and right-distributivity. -- -- Compare 'codistributive' and 'closed_stable'. -- -- When /R/ is also left-distributive we get: \( \forall a, b \in R: a * b = a + a * b + b \) -- -- See also 'Data.Warning' and < https://blogs.ncl.ac.uk/andreymokhov/united-monoids/#whatif >. -- nonunital_on :: (Monoid r, Semiring r) => Rel r -> r -> r -> Bool nonunital_on (~~) a b = (a >< b) ~~ (a >< b <> b) ------------------------------------------------------------------------------------ -- Properties of unital semirings -- | \( \forall a \in R: (z * a) \sim u \) -- -- A /R/ is unital then its addititive unit must be right-annihilative, i.e.: -- -- @ -- 'mempty' '><' a ~~ 'mempty' -- @ -- -- For 'Alternative' instances this property translates to: -- -- @ -- 'empty' '*>' a ~~ 'empty' -- @ -- -- All right semirings must have a right-absorbative addititive unit, -- however note that depending on the 'Prd' instance this does not preclude -- IEEE754-mandated behavior such as: -- -- @ -- 'mempty' '><' NaN ~~ NaN -- @ -- -- This is a required property. -- annihilative_multiplication_on :: (Monoid r, Semiring r) => Rel r -> r -> Bool annihilative_multiplication_on (~~) r = Prop.annihilative_on (~~) (><) mempty r -- | 'fromBoolean' must be a semiring homomorphism into /R/. -- -- This is a required property. -- homomorphism_boolean :: forall r. (Eq r, Monoid r, Semiring r) => Bool -> Bool -> Bool homomorphism_boolean i j = fromBoolean True == (unit @r) && fromBoolean False == (mempty @r) && fromBoolean (i && j) == fi >< fj && fromBoolean (i || j) == fi <> fj where fi :: r = fromBoolean i fj :: r = fromBoolean j ------------------------------------------------------------------------------------ -- Properties of cancellative & commutative semirings -- | \( \forall a, b, c \in R: b + a \sim c + a \Rightarrow b = c \) -- -- If /R/ is right-cancellative wrt addition then for all /a/ -- the section /(a <>)/ is injective. -- cancellative_addition_on :: Semigroup r => Rel r -> r -> r -> r -> Bool cancellative_addition_on (~~) a = Prop.injective_on (~~) (<> a) -- | \( \forall a, b, c \in R: b * a \sim c * a \Rightarrow b = c \) -- -- If /R/ is right-cancellative wrt multiplication then for all /a/ -- the section /(a ><)/ is injective. -- cancellative_multiplication_on :: Semiring r => Rel r -> r -> r -> r -> Bool cancellative_multiplication_on (~~) a = Prop.injective_on (~~) (>< a) -- | \( \forall a, b \in R: a + b \sim b + a \) -- commutative_addition_on :: Semigroup r => Rel r -> r -> r -> Bool commutative_addition_on (~~) = Prop.commutative_on (~~) (<>) -- | \( \forall a, b \in R: a * b \sim b * a \) -- commutative_multiplication_on :: Semiring r => Rel r -> r -> r -> Bool commutative_multiplication_on (~~) = Prop.commutative_on (~~) (><) ------------------------------------------------------------------------------------ -- Properties of distributive & co-distributive semirings -- | \( \forall M \geq 0; a_1 \dots a_M, b \in R: (\sum_{i=1}^M a_i) * b \sim \sum_{i=1}^M a_i * b \) -- -- /R/ must right-distribute multiplication between finite sums. -- -- For types with exact arithmetic this follows from 'distributive' & 'neutral_multiplication'. -- distributive_finite_on :: (Monoid r, Semiring r) => Rel r -> [r] -> r -> Bool distributive_finite_on (~~) as b = fold as >< b ~~ foldMap (>< b) as -- | \( \forall M \geq 1; a_1 \dots a_M, b \in R: (\sum_{i=1}^M a_i) * b \sim \sum_{i=1}^M a_i * b \) -- -- /R/ must right-distribute multiplication over finite (non-empty) sums. -- -- For types with exact arithmetic this follows from 'distributive' and the universality of 'fold1'. -- distributive_finite1_on :: (Semiring r) => Rel r -> NonEmpty r -> r -> Bool distributive_finite1_on (~~) as b = fold1 as >< b ~~ foldMap1 (>< b) as -- | \( \forall M,N \geq 0; a_1 \dots a_M, b_1 \dots b_N \in R: (\sum_{i=1}^M a_i) * (\sum_{j=1}^N b_j) \sim \sum_{i=1 j=1}^{i=M j=N} a_i * b_j \) -- -- If /R/ is also left-distributive then it supports cross-multiplication. -- distributive_cross_on :: (Monoid r, Semiring r) => Rel r -> [r] -> [r] -> Bool distributive_cross_on (~~) as bs = fold as >< fold bs ~~ cross as bs -- | \( \forall M,N \geq 1; a_1 \dots a_M, b_1 \dots b_N \in R: (\sum_{i=1}^M a_i) * (\sum_{j=1}^N b_j) = \sum_{i=1 j=1}^{i=M j=N} a_i * b_j \) -- -- If /R/ is also left-distributive then it supports (non-empty) cross-multiplication. -- distributive_cross1_on :: Semiring r => Rel r -> NonEmpty r -> NonEmpty r -> Bool distributive_cross1_on (~~) as bs = fold1 as >< fold1 bs ~~ cross1 as bs ------------------------------------------------------------------------------------ -- Properties of closed semirings {- -- | \( 1 + \sum_{i=1}^{P+1} a^i = 1 + \sum_{i=1}^{P} a^i \) -- -- If /a/ is p-stable for some /p/, then we have: -- -- @ -- 'powers' p a ~~ a '><' 'powers' p a '<>' 'unit' ~~ 'powers' p a '><' a '<>' 'unit' -- @ -- -- If '<>' and '><' are idempotent then every element is 1-stable: -- -- @ a '><' a '<>' a '<>' 'unit' = a '<>' a '<>' 'unit' = a '<>' 'unit' @ -- closed_pstable :: (Eq r, Prd r, Monoid r, Semiring r) => Natural -> r -> Bool closed_pstable p a = powers p a ~~ powers (p <> unit) a -- | \( x = a * x + b \Rightarrow x = (1 + \sum_{i=1}^{P} a^i) * b \) -- -- If /a/ is p-stable for some /p/, then we have: -- closed_paffine :: (Prd r, Monoid r, Semiring r) => Natural -> r -> r -> Bool closed_paffine p a b = closed_pstable p a ==> x ~~ a >< x <> b where x = powers p a >< b -- | \( \forall a \in R : a^* = a^* * a + 1 \) -- -- Closure is /p/-stability for all /a/ in the limit as \( p \to \infinity \). -- -- One way to think of this property is that all geometric series -- "converge": -- -- \( \forall a \in R : 1 + \sum_{i \geq 1} a^i \in R \) -- closed_stable :: (Prd r, Monoid r, Closed r) => r -> Bool closed_stable a = star a ~~ star a >< a <> unit closed_stable' :: (Prd r, Monoid r, Closed r) => r -> Bool closed_stable' a = star a ~~ unit <> a >< star a closed_affine :: (Prd r, Monoid r, Closed r) => r -> r -> Bool closed_affine a b = x ~~ a >< x <> b where x = star a >< b -- If /R/ is closed then 'star' must be idempotent: -- -- @'star' ('star' a) ~~ 'star' a@ -- idempotent_star :: (Prd r, Monoid r, Closed r) => r -> Bool idempotent_star = Prop.idempotent star -- If @r@ is a closed dioid then 'star' must be monotone: -- -- @x '<~' y ==> 'star' x '<~' 'star' y@ -- monotone_star :: (Prd r, Monoid r, Closed r) => r -> r -> Bool monotone_star = Prop.monotone_on (<~) star -}