module Main where import Data.List as L import Data.Map.Strict as M import Data.Tuple (swap) import Data.Vector as V import Debug.Trace import Test.QuickCheck import Test.Tasty import Test.Tasty.QuickCheck as QC import Test.Tasty.TH import Data.Paired.Vector as DPV import Data.Paired.Foldable as DPF import Math.TriangularNumbers -- * Data.Paired.Vector -- | prop_vector_upperTri_On :: NonNegative Int -> Bool prop_vector_upperTri_On (NonNegative k) = V.toList vs == ls where vs = snd $ upperTriVG OnDiag v ls = [ (a,b) | as@(a:_) <- L.init . L.tails $ V.toList v , b <- as ] v = V.enumFromTo 0 k -- | prop_vector_upperTri_No :: NonNegative Int -> Bool prop_vector_upperTri_No (NonNegative k) = V.toList vs == ls where vs = snd $ upperTriVG NoDiag v ls = [ (a,b) | (a:as) <- L.init . L.tails $ V.toList v , b <- as ] v = V.enumFromTo 0 k -- | prop_vector_rectangular :: NonNegative Int -> NonNegative Int -> Bool prop_vector_rectangular (NonNegative k) (NonNegative l) = V.toList vs == ls where vs = snd $ rectangularVG as bs ls = [ (a,b) | a <- V.toList as , b <- V.toList bs ] as = V.enumFromTo 0 k bs = V.enumFromTo 0 l -- * Data.Paired.Foldable -- | Generalized upper triangular elements. We want to enumerate all -- elements, including those on the main diagonal. prop_foldable_upperTri_On_All :: (NonNegative Int, Bool) -> Bool prop_foldable_upperTri_On_All (NonNegative n, b) | chk = True | otherwise = traceShow (ls,vs) False where Right (_,_,vs) = DPF.upperTri (if b then KnownSize n else UnknownSize) OnDiag All xs ls = [ ((a,b),(a,b)) | as@(a:_) <- L.init . L.tails $ xs , b <- as ] xs = [ 0 .. n-1 ] chk = vs == ls -- | Only a subset of elements, starting at @k@ (counting from 0) and -- taking @s@ elements. prop_foldable_upperTri_On_FromN :: (NonNegative Int, NonNegative Int, NonNegative Int, Bool) -> Bool prop_foldable_upperTri_On_FromN (NonNegative n, NonNegative k, NonNegative s, b) | chk = True | otherwise = traceShow (ls,vs) False where Right (_,_,vs) = DPF.upperTri (if b then KnownSize n else UnknownSize) OnDiag (FromN k s) xs ls = L.take s . L.drop k $ [ ((a,b),(a,b)) | as@(a:_) <- L.init . L.tails $ xs , b <- as ] xs = [ 0 .. n-1 ] chk = vs == ls prop_foldable_upperTri_No_All :: (NonNegative Int, Bool) -> Bool prop_foldable_upperTri_No_All (NonNegative n, b) | chk = True | otherwise = traceShow (ls,vs) False where Right (_,_,vs) = DPF.upperTri (if b then KnownSize n else UnknownSize) NoDiag All xs ls = [ ((a,b),(a,b)) | (a:as) <- L.init . L.tails $ xs , b <- as ] xs = [ 0 .. n-1 ] chk = vs == ls prop_foldable_upperTri_No_FromN :: (NonNegative Int, NonNegative Int, NonNegative Int, Bool) -> Bool prop_foldable_upperTri_No_FromN (NonNegative n, NonNegative k, NonNegative s, b) | chk = True | otherwise = traceShow (ls,vs) False where Right (_,_,vs) = DPF.upperTri (if b then KnownSize n else UnknownSize) NoDiag (FromN k s) xs ls = L.take s . L.drop k $ [ ((a,b),(a,b)) | (a:as) <- L.init . L.tails $ xs , b <- as ] xs = [ 0 .. n-1 ] chk = vs == ls -- * Math.TriangularNumbers -- | Test that each index pair @(i,j)@ is assigned a unique linear index -- @k@ given @0 <= i <= j <= n@. prop_uniqueLinear :: NonNegative Int -> Bool prop_uniqueLinear (NonNegative n) = M.null $ M.filter ((/=1) . L.length) mp where mp = M.fromListWith (L.++) [ (toLinear n (i,j), [(i,j)]) | i <- [0..n], j <- [i..n] ] -- | Back and forth translation between paired and linear indices is -- unique. prop_BackForth :: NonNegative Int -> Bool prop_BackForth (NonNegative n) = L.and xs where mb = M.fromList ls mf = M.fromList $ L.map swap ls ls = [ (toLinear n (i,j), (i,j)) | i <- [0..n], j <- [i..n] ] xs = [ (mb M.! k == (i,j)) && (mf M.! (i,j) == k) && fromLinear n k == (i,j) | (k,(i,j)) <- ls ] -- main :: IO () main = $(defaultMainGenerator)