Copyright | Guillaume Sabbagh 2021 |
---|---|
License | GPL-3 |
Maintainer | guillaumesabbagh@protonmail.com |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Let J and C be two categories, we consider the functor category C^J. The diagonal functor D : C -> C^J maps each object x of C to the constant diagram D_x from J to C. It maps each morphism to the natural transformation between the two constant diagrams associated to the source and the target of the morphism.
Synopsis
- mkDiagonalFunctor :: (FiniteCategory c1 m1 o1, Morphism m1 o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq o2) => c1 -> c2 -> Diagram c2 m2 o2 (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2)
Documentation
:: (FiniteCategory c1 m1 o1, Morphism m1 o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq o2) | |
=> c1 | J |
-> c2 | C |
-> Diagram c2 m2 o2 (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2) | D : C -> C^J |
Given two categories J and C, returns the diagonal functor C -> C^J.