Copyright | Guillaume Sabbagh 2021 |
---|---|
License | GPL-3 |
Maintainer | guillaumesabbagh@protonmail.com |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
The lim functor which takes every diagram to its limit object according to the global definition of limit. See also ConeCategory for the limit of a specific diagram.
Synopsis
- limitFunctor :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq c1, Eq m1, Eq o1, PrettyPrintable c1, PrettyPrintable c2, PrettyPrintable o1, PrettyPrintable o2, PrettyPrintable m1, PrettyPrintable m2, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq c2, Eq m2, Eq o2) => c1 -> c2 -> Diagram (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2) c2 m2 o2
- colimitFunctor :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq c1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq c2, Eq m2, Eq o2) => c1 -> c2 -> Diagram (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2) c2 m2 o2
Documentation
limitFunctor :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq c1, Eq m1, Eq o1, PrettyPrintable c1, PrettyPrintable c2, PrettyPrintable o1, PrettyPrintable o2, PrettyPrintable m1, PrettyPrintable m2, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq c2, Eq m2, Eq o2) => c1 -> c2 -> Diagram (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2) c2 m2 o2 Source #
Returns the limit functor according to the global definition of limit (see https://ncatlab.org/nlab/show/limit#global_definition_in_terms_of_adjoint_of_the_constant_diagram_functor).
Given an indexing category J
and a category C
, returns a functor which maps each diagram of form J
in C
to its limit object in C
.
colimitFunctor :: (FiniteCategory c1 m1 o1, Morphism m1 o1, Eq c1, Eq m1, Eq o1, FiniteCategory c2 m2 o2, Morphism m2 o2, Eq c2, Eq m2, Eq o2) => c1 -> c2 -> Diagram (FunctorCategory c1 m1 o1 c2 m2 o2) (NaturalTransformation c1 m1 o1 c2 m2 o2) (Diagram c1 m1 o1 c2 m2 o2) c2 m2 o2 Source #
Returns the colimit functor according to the global definition of colimit (see https://ncatlab.org/nlab/show/limit#global_definition_in_terms_of_adjoint_of_the_constant_diagram_functor).
Given an indexing category J
and a category C
, returns a functor which maps each diagram of form J
in C
to its colimit object in C
.