{-# LANGUAGE OverlappingInstances #-} -- just for the proxy {- | The HList library (C) 2004, Oleg Kiselyov, Ralf Laemmel, Keean Schupke Some very basic technology for faking dependent types in Haskell. -} module Data.HList.FakePrelude (module Data.HList.FakePrelude, module Data.Proxy) where import Data.Proxy import GHC.Prim (Constraint) import GHC.TypeLits -- -------------------------------------------------------------------------- -- * A heterogeneous apply operator -- | simpler/weaker version where type information only propagates forward -- with this one. 'app' defined below, is more complicated / verbose to define, -- but it offers better type inference. Most uses have been converted to -- 'app', so there is not much that can be done with 'Apply'. class Apply f a where type ApplyR f a :: * apply :: f -> a -> ApplyR f a apply = undefined -- In case we use Apply for -- type-level computations only {- $note Polymorphic functions are not first-class in haskell. One solution is to write an instance of 'ApplyAB' for a data type that takes the place of the original function. In other words, > data Fn = Fn > instance ApplyAB Fn a b where applyAB Fn a = actual_fn a Normally you would have been able to pass around the definition actual_fn. [@Type inference / Local functional dependencies@] Note that @class ApplyAB@ has three parameters and no functional dependencies. Instances should be written in the style: > instance (int ~ Int, double ~ Double) => ApplyAB Fn int double > where applyAB _ = fromIntegral rather than the more natural > instance ApplyAB Fn Int Double The first instance allows types to be inferred as if we had @class ApplyAB a b c | a -> b c@, while the second instance only matches if ghc already knows that it needs @ApplyAB Fn Int Double@. Additional explanation can be found in <http://okmij.org/ftp/Haskell/typecast.html#local-fd local functional dependencies> -} -- | No constraints on result and argument types class ApplyAB f a b where applyAB :: f -> a -> b applyAB = undefined -- In case we use Apply for type-level computations only {- $fun 'Fun' can be used instead of writing a new instance of 'ApplyAB'. Refer to the definition/source for the the most concise explanation. A more wordy explanation is given below: A type signature needs to be provided on 'Fun' to make it work. Depending on the kind of the parameters to 'Fun', a number of different results happen. [@ex1@] A list of kind @[* -> Constraint]@ produces those constraints on the argument type: >>> :set -XDataKinds >>> let plus1 = Fun (\x -> if x < 5 then x+1 else 5) :: Fun '[Num, Ord] '() >>> :t applyAB plus1 applyAB plus1 :: (Num a, Ord a) => a -> a Also note the use of @'()@ to signal that the result type is the same as the argument type. A single constraint can also be supplied: >>> let succ1 = Fun succ :: Fun Enum '() >>> :t applyAB succ1 applyAB succ1 :: Enum a => a -> a >>> let just = Fun Just :: Fun '[] Maybe >>> :t applyAB just applyAB just :: a -> Maybe a -} data Fun (cxt :: k1) (getb :: k2) = Fun (forall a. FunCxt cxt a => a -> FunApp getb a) {- | see 'Fun'. The only difference here is that the argument type is calculated from the result type. >>> let rd = Fun' read :: Fun' Read String >>> :t applyAB rd applyAB rd :: Read b => [Char] -> b >>> let fromJust' = Fun' (\(Just a) -> a) :: Fun' '[] Maybe >>> :t applyAB fromJust' applyAB fromJust' :: Maybe b -> b Note this use of Fun' means we don't have to get the b out of @Maybe b@, -} data Fun' (cxt :: k1) (geta :: k2) = Fun' (forall b. FunCxt cxt b => FunApp geta b -> b) type family FunApp (fns :: k) a type instance FunApp (fn :: *) a = fn type instance FunApp (fn :: * -> *) a = fn a type instance FunApp (fn :: ()) a = a type family FunCxt (cxts :: k) a :: Constraint type instance FunCxt (x ': xs) a = (x a, FunCxt xs a) type instance FunCxt (cxt :: * -> Constraint) a = cxt a type instance FunCxt '[] a = () -- | should there be so many ways to write no constraint? type instance FunCxt (cxt :: ()) a = () type instance FunCxt (cxt :: *) a = (cxt ~ a) instance (FunCxt cxt a, FunApp getb a ~ b) => ApplyAB (Fun cxt getb) a b where applyAB (Fun f) x = f x instance (FunCxt cxt b, FunApp geta b ~ a) => ApplyAB (Fun' cxt geta) a b where applyAB (Fun' f) x = f x -- ** Simple useful instances of Apply -- | note this function will only be available at a single type -- (that is, @hMap succ@ will only work on 'HList' that contain -- only one type) instance (x' ~ x, y' ~ y) => ApplyAB (x' -> y') x y where applyAB f x = f x {- | print. An alternative implementation could be: >>> let hPrint = Fun print :: Fun Show (IO ()) This produces: >>> :t applyAB hPrint applyAB hPrint :: Show a => a -> IO () -} data HPrint = HPrint instance (io ~ IO (), Show x) => ApplyAB HPrint x io where applyAB _ x = print x {- | read >>> applyAB HRead "5.0" :: Double 5.0 -} data HRead = HRead instance (String ~ string, Read a) => ApplyAB HRead string a where applyAB _ x = read x -- | show data HShow = HShow instance (String ~ string, Show a) => ApplyAB HShow a string where applyAB _ x = show x {- | Compose two instances of 'ApplyAB' >>> applyAB (HComp HRead HShow) (5::Double) :: Double 5.0 -} data HComp g f = HComp g f -- ^ @g . f@ instance forall f g a b c. (ApplyAB f a b, ApplyAB g b c) => ApplyAB (HComp g f) a c where applyAB ~(HComp g f) x = applyAB g (applyAB f x :: b) {- | @app Comp (f,g) = g . f@. Works like: >>> applyAB Comp (succ, pred) 'a' 'a' >>> applyAB Comp (toEnum :: Int -> Char, fromEnum) 10 10 Note that defaulting will sometimes give you the wrong thing > used to work (with associated types calculating result/argument types) > >>> applyAB Comp (fromEnum, toEnum) 'a' > *** Exception: Prelude.Enum.().toEnum: bad argument -} data Comp = Comp instance (y ~ y', fg ~ (x -> y, y' -> z), r ~ (x -> z)) => ApplyAB Comp fg r where applyAB _ (f,g) = g . f -- | (\(a,b) -> f a >> b) newtype HSeq x = HSeq x instance (Monad m, ApplyAB f x fx, fx ~ m (), pair ~ (x,m ()), ApplyAB f x (m ()) ) => ApplyAB (HSeq f) pair fx where applyAB (HSeq f) (x,c) = do asVoid (applyAB f x); c where asVoid :: m () -> m () asVoid t = t -- | @HJust ()@ is a placeholder for a function that applies the 'HJust' constructor instance hJustA ~ HJust a => ApplyAB (HJust t) a hJustA where applyAB _ a = HJust a -- | 'flip' data HFlip = HFlip instance (f1 ~ (a -> b -> c), f2 ~ (b -> a -> c)) => ApplyAB HFlip f1 f2 where applyAB _ = flip -- -------------------------------------------------------------------------- -- * Proxy -- -- $note see "Data.HList.Proxy" -- | A special 'Proxy' for record labels, polykinded data Label l = Label labelToProxy :: Label l -> Proxy l labelToProxy = undefined class ShowLabel l where showLabel :: Label l -> String -- -------------------------------------------------------------------------- -- * Booleans {- $boolNote GHC already lifts booleans, defined as > data Bool = True | False to types: Bool becomes kind and True and False (also denoted by 'True and 'False) become nullary type constructors. The above line is equivalent to > data HTrue > data HFalse > class HBool x > instance HBool HTrue > instance HBool HFalse -} -- ** Value-level proxies hTrue :: Proxy True ; hTrue = undefined hFalse :: Proxy False; hFalse = undefined instance Show (Proxy True) where show _ = "HTrue" instance Show (Proxy False) where show _ = "HFalse" -- ** Conjunction type family HAnd (t1 :: Bool) (t2 :: Bool) :: Bool type instance HAnd False t = False type instance HAnd True t = t -- | `demote' to values hAnd :: Proxy t1 -> Proxy t2 -> Proxy (HAnd t1 t2) hAnd = undefined -- ** Disjunction type family HOr (t1 :: Bool) (t2 :: Bool) :: Bool type instance HOr False t = t type instance HOr True t = True -- | `demote' to values hOr :: Proxy t1 -> Proxy t2 -> Proxy (HOr t1 t2) hOr = undefined {- $boolHistoricalNote Compare with the original code based on functional dependencies: > class (HBool t, HBool t', HBool t'') => HOr t t' t'' | t t' -> t'' > where > hOr :: t -> t' -> t'' > instance HOr HFalse HFalse HFalse > where > hOr _ _ = hFalse > instance HOr HTrue HFalse HTrue > where > hOr _ _ = hTrue > instance HOr HFalse HTrue HTrue > where > hOr _ _ = hTrue > instance HOr HTrue HTrue HTrue > where > hOr _ _ = hTrue -} class HCond (t :: Bool) x y z | t x y -> z where hCond :: Proxy t -> x -> y -> z instance HCond False x y y where hCond _ _ y = y instance HCond True x y x where hCond _ x _ = x -- ** Boolean equivalence type family HBoolEQ (t1 :: Bool) (t2 :: Bool) :: Bool type instance HBoolEQ False False = True type instance HBoolEQ False True = False type instance HBoolEQ True False = False type instance HBoolEQ True True = True -- We could define all kinds of further Boolean operations. -- We omit everything what's not needed for the code in the paper. -- -------------------------------------------------------------------------- -- * Naturals -- | The data type to be lifted to the type level data HNat = HZero | HSucc HNat hZero :: Proxy HZero; hZero = undefined hSucc :: Proxy (n :: HNat) -> Proxy (HSucc n); hSucc _ = undefined hPred :: Proxy (HSucc n) -> Proxy n; hPred _ = undefined class HNat2Integral (n::HNat) where hNat2Integral :: Integral i => Proxy n -> i instance HNat2Integral HZero where hNat2Integral _ = 0 instance HNat2Integral n => HNat2Integral (HSucc n) where hNat2Integral n = hNat2Integral (hPred n) + 1 instance HNat2Integral n => Show (Proxy (n :: HNat)) where show n = "H" ++ show (hNat2Integral n :: Integer) -- | Equality on natural numbers -- (eventually to be subsumed by the universal polykinded HEq) type family HNatEq (t1 :: HNat) (t2 :: HNat) :: Bool type instance HNatEq HZero HZero = True type instance HNatEq HZero (HSucc n) = False type instance HNatEq (HSucc n) HZero = False type instance HNatEq (HSucc n) (HSucc n') = HNatEq n n' -- | Less than type family HLt (x :: HNat) (y :: HNat) :: Bool type instance HLt HZero HZero = False type instance HLt HZero (HSucc n) = True type instance HLt (HSucc n) HZero = False type instance HLt (HSucc n) (HSucc n') = HLt n n' hLt :: Proxy x -> Proxy y -> Proxy (HLt x y) hLt = undefined -- -------------------------------------------------------------------------- -- * Maybies -- $maybiesNote We cannot use lifted Maybe since the latter are not populated data HNothing = HNothing deriving Show newtype HJust x = HJust x deriving Show -- -------------------------------------------------------------------------- -- * Polykinded Equality for types -- | We have to use Functional dependencies for now, -- for the sake of the generic equality. class HEq (x :: k) (y :: k) (b :: Bool) | x y -> b -- Equality instances for naturals instance HEq HZero HZero True instance HEq HZero (HSucc n) False instance HEq (HSucc n) HZero False instance HEq n n' b => HEq (HSucc n) (HSucc n') b hEq :: HEq x y b => x -> y -> Proxy b hEq = undefined -- -------------------------------------------------------------------------- -- * Staged equality -- | -- -- * Establish type equality statically -- -- * Establish remaining value-level equality dynamically -- -- removed: use typeable {- class HStagedEq x y where hStagedEq :: x -> y -> Bool -} {- -- -------------------------------------------------------------------------- -- | A predicate for type equality -- -- There are different implementations: see TypeEq*.hs class HBool b => TypeEq x y b | x y -> b -- Rely on lazy show for type-level Booleans typeEq :: TypeEq t t' b => t -> t' -> b typeEq = undefined -- A more disciplined version: based on proxies proxyEq :: TypeEq t t' b => Proxy t -> Proxy t' -> b proxyEq _ _ = undefined -} -- -------------------------------------------------------------------------- -- * Type-safe cast -- no longer need. We use a a ~ b {- class TypeCast x y | x -> y, y -> x where typeCast :: x -> y -} -- -------------------------------------------------------------------------- -- * Error messages -- | A class without instances for explicit failure class Fail x