{- | The HList library (C) 2004, Oleg Kiselyov, Ralf Laemmel, Keean Schupke Basic declarations for typeful heterogeneous lists. Excuse the unstructured haddocks: while there are many declarations here some are alternative implementations should be grouped, and the definitions here are analgous to many list functions in the "Prelude". -} module Data.HList.HList where import Data.HList.FakePrelude import Data.HList.HListPrelude import Control.Applicative (Applicative, liftA2, pure) -- -------------------------------------------------------------------------- -- * Heterogeneous type sequences -- $note -- -- The easiest way to ensure that sequences can only be formed with Nil -- and Cons is to use GADTs -- The kind [*] is list kind (lists lifted to types) data HList (l::[*]) where HNil :: HList '[] HCons :: e -> HList l -> HList (e ': l) -- | this comparison is two traversals instance (ConvHList l, Eq (Prime l)) => Eq (HList l) where x == y = prime x == prime y -- ** Alternative representation {- $note HNil' and HCons' are the older ADT-style. This has some advantages over the GADT: * lazy pattern matches are allowed * type inference is better if you want to directly pattern match <http://stackoverflow.com/questions/19077037/is-there-any-deeper-type-theoretic-reason-ghc-cant-infer-this-type see stackoverflow post here> -} data HNil' = HNil' deriving (Eq) data HCons' a b = HCons' a b deriving (Eq) -- | conversion between GADT ('HList') and ADT ('HNil'' 'HCons'') -- representations class (UnPrime (Prime a) ~ a) => ConvHList (a :: [*]) where type Prime a :: * type UnPrime b :: [*] prime :: HList a -> Prime a unPrime :: Prime a -> HList a instance ConvHList as => ConvHList (a ': as) where type Prime (a ': as) = a `HCons'` Prime as type UnPrime (b `HCons'` bs) = (b ': UnPrime bs) prime (a `HCons` as) = a `HCons'` prime as unPrime ~(a `HCons'` as) = a `HCons` unPrime as instance ConvHList '[] where type Prime '[] = HNil' type UnPrime HNil' = '[] prime _ = HNil' unPrime _ = HNil instance Show (HList '[]) where show _ = "H[]" instance (Show e, Show (HList l)) => Show (HList (e ': l)) where show (HCons x l) = let 'H':'[':s = show l in "H[" ++ show x ++ (if s == "]" then s else ", " ++ s) infixr 2 `HCons` -- -------------------------------------------------------------------------- -- * Basic list functions -- | 'head' hHead :: HList (e ': l) -> e hHead (HCons x _) = x -- | 'tail' hTail :: HList (e ': l) -> HList l hTail (HCons _ l) = l -- | Length type family HLength (x :: [k]) :: HNat type instance HLength '[] = HZero type instance HLength (x ': xs) = HSucc (HLength xs) hLength :: HList l -> Proxy (HLength l) hLength _ = undefined -- ** Append instance HExtend e (HList l) where type HExtendR e (HList l) = HList (e ': l) (.*.) = HCons instance HAppend (HList l1) (HList l2) where hAppend = hAppendList type instance HAppendR (HList l1) (HList l2) = HList (HAppendList l1 l2) type family HAppendList (l1 :: [k]) (l2 :: [k]) :: [k] type instance HAppendList '[] l = l type instance HAppendList (e ': l) l' = e ': HAppendList l l' -- | the same as 'hAppend' hAppendList :: HList l1 -> HList l2 -> HList (HAppendList l1 l2) hAppendList HNil l = l hAppendList (HCons x l) l' = HCons x (hAppend l l') -- -------------------------------------------------------------------------- -- ** Alternative append -- | 'hAppend'' below is implemented using the same idea append' :: [a] -> [a] -> [a] append' l l' = foldr (:) l' l -- | Alternative implementation of 'hAppend'. Demonstrates 'HFoldr' hAppend' :: (HFoldr FHCons v l r) => HList l -> v -> r hAppend' l l' = hFoldr FHCons l' l data FHCons = FHCons instance ( x ~ (e,HList l), y ~ (HList (e ': l))) => ApplyAB FHCons x y where applyAB _ (e,l) = HCons e l -- ** Historical append {- $ The original HList code is included below. In both cases we had to program the algorithm twice, at the term and the type levels. [@The class HAppend@] > class HAppend l l' l'' | l l' -> l'' > where > hAppend :: l -> l' -> l'' > [@The instance following the normal append@] > instance HList l => HAppend HNil l l > where > hAppend HNil l = l > > instance (HList l, HAppend l l' l'') > => HAppend (HCons x l) l' (HCons x l'') > where > hAppend (HCons x l) l' = HCons x (hAppend l l') -} -- -------------------------------------------------------------------------- -- * Reversing HLists -- Append the reversed l1 to l2 type family HRevApp (l1 :: [k]) (l2 :: [k]) :: [k] type instance HRevApp '[] l = l type instance HRevApp (e ': l) l' = HRevApp l (e ': l') hRevApp :: HList l1 -> HList l2 -> HList (HRevApp l1 l2) hRevApp HNil l = l hRevApp (HCons x l) l' = hRevApp l (HCons x l') hReverse l = hRevApp l HNil -- -------------------------------------------------------------------------- -- -- * A nicer notation for lists -- -- | List termination hEnd :: HList l -> HList l hEnd = id {- ^ Note: [@x :: HList a@] means: @forall a. x :: HList a@ [@hEnd x@] means: @exists a. x :: HList a@ -} -- | Building lists hBuild :: (HBuild' '[] r) => r hBuild = hBuild' HNil class HBuild' l r where hBuild' :: HList l -> r instance (l' ~ HRevApp l '[]) => HBuild' l (HList l') where hBuild' l = hReverse l instance HBuild' (a ': l) r => HBuild' l (a->r) where hBuild' l x = hBuild' (HCons x l) -- ** examples {- $examplesNote The classes above allow the third (shortest) way to make a list (containing a,b,c) in this case > list = a `HCons` b `HCons` c `HCons` HNil > list = a .*. b .*. c .*. HNil > list = hEnd $ hBuild a b c >>> let x = hBuild True in hEnd x H[True] >>> let x = hBuild True 'a' in hEnd x H[True, 'a'] >>> let x = hBuild True 'a' "ok" in hEnd x H[True, 'a', "ok"] -} -- *** historical {- $hbuild the show instance has since changed, but these uses of 'hBuild'/'hEnd' still work > HList> let x = hBuild True in hEnd x > HCons True HNil > HList> let x = hBuild True 'a' in hEnd x > HCons True (HCons 'a' HNil) > HList> let x = hBuild True 'a' "ok" in hEnd x > HCons True (HCons 'a' (HCons "ok" HNil)) > HList> hEnd (hBuild (Key 42) (Name "Angus") Cow (Price 75.5)) > HCons (Key 42) (HCons (Name "Angus") (HCons Cow (HCons (Price 75.5) HNil))) > HList> hEnd (hBuild (Key 42) (Name "Angus") Cow (Price 75.5)) == angus > True -} -- -------------------------------------------------------------------------- -- * folds -- ** foldr -- $foldNote Consume a heterogenous list. GADTs and type-classes mix well class HFoldr f v (l :: [*]) r where hFoldr :: f -> v -> HList l -> r instance (v ~ v') => HFoldr f v '[] v' where hFoldr _ v _ = v -- | uses 'ApplyAB' not 'Apply' instance (ApplyAB f (e, r) r', HFoldr f v l r) => HFoldr f v (e ': l) r' where hFoldr f v (HCons x l) = applyAB f (x, hFoldr f v l :: r) class HScanr f z ls rs where hScanr :: f -> z -> HList ls -> HList rs instance HScanr f z '[] '[z] where hScanr _ z _ = HCons z HNil instance (ApplyAB f (x,r) s, HScanr f z xs (r ': rs)) => HScanr f z (x ': xs) (s ': r ': rs) where hScanr f z (HCons x xs) = case hScanr f z xs :: HList (r ': rs) of HCons r rs -> (applyAB f (x,r) :: s) `HCons` r `HCons` rs class HFoldr1 f (l :: [*]) r where hFoldr1 :: f -> HList l -> r instance (v ~ v') => HFoldr1 f '[v] v' where hFoldr1 _ (HCons v _) = v -- | uses 'ApplyAB' not 'Apply' instance (ApplyAB f (e, r) r', HFoldr1 f (e' ': l) r) => HFoldr1 f (e ': e' ': l) r' where hFoldr1 f (HCons x l) = applyAB f (x, hFoldr1 f l :: r) -- ** foldl {- | like 'foldl' >>> hFoldl (uncurry $ flip (:)) [] (1 `HCons` 2 `HCons` HNil) [2,1] -} class HFoldl f (z :: *) xs (r :: *) where hFoldl :: f -> z -> HList xs -> r instance forall f z z' r x zx xs. (zx ~ (z,x), ApplyAB f zx z', HFoldl f z' xs r) => HFoldl f z (x ': xs) r where hFoldl f z (x `HCons` xs) = hFoldl f (applyAB f (z,x) :: z') xs instance (z ~ z') => HFoldl f z '[] z' where hFoldl _ z _ = z -- * unfold -- $unfoldNote Produce a heterogenous list. Uses the more limited -- 'Apply' instead of 'App' since that's all that is needed for uses of this -- function downstream. Those could in principle be re-written. hUnfold :: (Apply p s, HUnfold' p (ApplyR p s)) => p -> s -> HList (HUnfold p s) hUnfold p s = hUnfold' p (apply p s) type HUnfold p s = HUnfoldR p (ApplyR p s) class HUnfold' p res where type HUnfoldR p res :: [*] hUnfold' :: p -> res -> HList (HUnfoldR p res) instance HUnfold' p HNothing where type HUnfoldR p HNothing = '[] hUnfold' _ _ = HNil instance (Apply p s, HUnfold' p (ApplyR p s)) => HUnfold' p (HJust (e,s)) where type HUnfoldR p (HJust (e,s)) = e ': HUnfold p s hUnfold' p (HJust (e,s)) = HCons e (hUnfold p s) -- * replicate class (HLength (HReplicateR n e) ~ n) => HReplicate (n :: HNat) e where hReplicate :: Proxy n -> e -> HList (HReplicateR n e) instance HReplicate HZero e where hReplicate _ _ = HNil instance HReplicate n e => HReplicate (HSucc n) e where hReplicate n e = e `HCons` hReplicate (hPred n) e -- | would be associated with 'HReplicate' except we want -- it to work with `e` of any kind, not just `*` that you can -- put into a HList. An \"inverse\" of 'HLength' type family HReplicateR (n :: HNat) (e :: k) :: [k] type instance HReplicateR HZero e = '[] type instance HReplicateR (HSucc n) e = e ': HReplicateR n e -- * concat {- | Like 'concat' but for HLists of HLists. Works in ghci... puzzling as what is different in doctest (it isn't @-XExtendedDefaultRules@) > hConcat $ hBuild (hBuild 1 2 3) (hBuild 'a' "abc") H[1, 2, 3, 'a', "abc"] -} class HConcat (a :: [*]) where type HConcatR a :: [*] hConcat :: HList a -> HList (HConcatR a) instance HConcat '[] where type HConcatR '[] = '[] hConcat _ = HNil instance (x ~ HList t, HConcat xs) => HConcat (x ': xs) where type HConcatR (x ': xs) = HAppendList (UnHList x) (HConcatR xs) hConcat (x `HCons` xs) = x `hAppendList` hConcat xs type family UnHList a :: [*] type instance UnHList (HList a) = a -- -------------------------------------------------------------------------- -- * traversing HLists -- ** producing HList -- *** map -- $mapNote It could be implemented with 'hFoldr', as we show further below {- | hMap is written such that the length of the result list can be determined from the length of the argument list (and the other way around). Similarly, the type of the elements of the list is propagated in both directions too. Excuse the ugly types printed. Unfortunately ghc (still?) shows types like @'[a,b]@ using the actual constructors involved @(':) a ((':) b '[])@ (or even worse when the kind variables are printed). >>> :set -XNoMonomorphismRestriction >>> let xs = 1 .*. 'c' .*. HNil >>> :t hMap (HJust ()) xs hMap (HJust ()) xs :: Num y => HList ((':) * (HJust y) ((':) * (HJust Char) ('[] *))) These 4 examples show that the constraint on the length (2 in this cae) can be applied before or after the 'hMap'. That inference is independent of the direction that type information is propagated for the individual elements. >>> let asLen2 xs = xs `asTypeOf` (undefined :: HList '[a,b]) >>> let lr xs = asLen2 (applyAB (HMap HRead) xs) >>> let ls xs = asLen2 (applyAB (HMap HShow) xs) >>> let rl xs = applyAB (HMap HRead) (asLen2 xs) >>> let sl xs = applyAB (HMap HShow) (asLen2 xs) >>> :t lr lr :: (Read y, Read y1) => HList ((':) * String ((':) * String ('[] *))) -> HList ((':) * y ((':) * y1 ('[] *))) >>> :t rl rl :: (Read y, Read y1) => HList ((':) * String ((':) * String ('[] *))) -> HList ((':) * y ((':) * y1 ('[] *))) >>> :t ls ls :: (Show y, Show y1) => HList ((':) * y ((':) * y1 ('[] *))) -> HList ((':) * String ((':) * String ('[] *))) >>> :t sl sl :: (Show y, Show y1) => HList ((':) * y ((':) * y1 ('[] *))) -> HList ((':) * String ((':) * String ('[] *))) -} hMap f xs = applyAB (HMap f) xs newtype HMap f = HMap f instance (HMapCxt f as bs as' bs') => ApplyAB (HMap f) as bs where applyAB (HMap f) = hMapAux f type HMapCxt f as bs as' bs' = (HMapAux f as' bs', as ~ HList as', bs ~ HList bs', SameLength as' bs') -- | Ensure two lists have the same length. We do case analysis on the -- first one (hence the type must be known to the type checker). -- In contrast, the second list may be a type variable. class SameLength' (es1 :: [k]) (es2 :: [m]) instance (es2 ~ '[]) => SameLength' '[] es2 instance (SameLength' xs ys, es2 ~ (y ': ys)) => SameLength' (x ': xs) es2 {- | symmetrical version of 'SameLength''. Written as a class instead of > type SameLength a b = (SameLength' a b, SameLength' b a) since ghc expands type synonyms, but not classes (and it seems to have the same result) -} class (SameLength' x y, SameLength' y x) => SameLength (x :: [k]) (y :: [m]) instance (SameLength' x y, SameLength' y x) => SameLength x y class HMapAux f (l :: [*]) (r :: [*]) where hMapAux :: SameLength l r => f -> HList l -> HList r instance HMapAux f '[] '[] where hMapAux _ _ = HNil instance (ApplyAB f e e', HMapAux f l l', SameLength l l') => HMapAux f (e ': l) (e' ': l') where hMapAux f (HCons x l) = applyAB f x `HCons` hMapAux f l -- -------------------------------------------------------------------------- -- **** alternative implementation -- $note currently broken newtype MapCar f = MapCar f -- | Same as 'hMap' only a different implementation. hMapMapCar :: (HFoldr (MapCar f) (HList '[]) l l') => f -> HList l -> l' hMapMapCar f = hFoldr (MapCar f) HNil instance ApplyAB f e e' => ApplyAB (MapCar f) (e,HList l) (HList (e' ': l)) where applyAB (MapCar f) (e,l) = HCons (applyAB f e) l -- -------------------------------------------------------------------------- -- *** @appEndo . mconcat . map Endo@ {- | >>> let xs = length .*. (+1) .*. (*2) .*. HNil >>> hComposeList xs "abc" 8 -} hComposeList :: (HFoldr Comp (a -> a) l (t -> a)) => HList l -> t -> a hComposeList fs v0 = let r = hFoldr (undefined :: Comp) (\x -> x `asTypeOf` r) fs v0 in r -- -------------------------------------------------------------------------- -- *** sequence {- | A heterogeneous version of > sequenceA :: (Applicative m) => [m a] -> m [a] Only now we operate on heterogeneous lists, where different elements may have different types 'a'. In the argument list of monadic values (m a_i), although a_i may differ, the monad 'm' must be the same for all elements. That's why we needed "Data.HList.TypeCastGeneric2" (currently (~)). The typechecker will complain if we attempt to use hSequence on a HList of monadic values with different monads. The 'hSequence' problem was posed by Matthias Fischmann in his message on the Haskell-Cafe list on Oct 8, 2006 <http://www.haskell.org/pipermail/haskell-cafe/2006-October/018708.html> <http://www.haskell.org/pipermail/haskell-cafe/2006-October/018784.html> -} class (Applicative m, SameLength a b) => HSequence m a b | a -> b, m b -> a where hSequence :: HList a -> m (HList b) {- ^ [@Maybe@] >>> hSequence $ Just (1 :: Integer) `HCons` (Just 'c') `HCons` HNil Just H[1, 'c'] >>> hSequence $ return 1 `HCons` Just 'c' `HCons` HNil Just H[1, 'c'] [@List@] >>> hSequence $ [1] `HCons` ['c'] `HCons` HNil [H[1, 'c']] -} instance Applicative m => HSequence m '[] '[] where hSequence _ = pure HNil instance (m1 ~ m, Applicative m, HSequence m as bs) => HSequence m (m1 a ': as) (a ': bs) where hSequence (HCons a b) = liftA2 HCons a (hSequence b) -- data ConsM = ConsM -- consM = LiftA2 FHCons newtype LiftA2 f = LiftA2 f instance (ApplyAB f (x,y) z, mz ~ m z, mxy ~ (m x, m y), Applicative m) => ApplyAB (LiftA2 f) mxy mz where applyAB (LiftA2 f) xy = liftA2 (curry (applyAB f)) `uncurry` xy {- instance (m1 ~ m, Applicative m) => ApplyAB ConsM (m a, m1 (HList l)) (m (HList (a ': l))) where {- type ApplyB ConsM (m a, m1 (HList l)) = Just (m (HList (a ': l))) type ApplyA ConsM (m (HList (a ': l))) = Just (m a, m (HList l)) -} applyAB _ (me,ml) = liftA2 HCons me ml -} -- **** alternative implementation -- | 'hSequence2' is not recommended over 'hSequence' since it possibly doesn't -- allow inferring argument types from the result types. Otherwise this version -- should do exactly the same thing. -- -- The DataKinds version needs a little help to find the type of the -- return HNil, unlike the original version, which worked just fine as -- -- > hSequence l = hFoldr ConsM (return HNil) l {- hSequence2 :: HSequence2 l f a => HList l -> f a hSequence2 l = let rHNil = pure HNil `asTypeOf` (liftA undefined x) x = hFoldr ConsM rHNil l in x -- | abbreviation for the constraint on 'hSequence2' type HSequence2 l f a = (Applicative f, HFoldr ConsM (f (HList ('[]))) l (f a)) -} -- -------------------------------------------------------------------------- -- -------------------------------------------------------------------------- -- ** producing homogenous lists -- *** map (no sequencing) -- $mapOut This one we implement via hFoldr newtype Mapcar f = Mapcar f instance (l ~ [e'], ApplyAB f e e', el ~ (e,l)) => ApplyAB (Mapcar f) el l where applyAB (Mapcar f) (e, l) = applyAB f e : l -- A synonym for the complex constraint type HMapOut f l e = (HFoldr (Mapcar f) [e] l [e]) hMapOut :: forall f e l. HMapOut f l e => f -> HList l -> [e] hMapOut f l = hFoldr (Mapcar f) ([] :: [e]) l -- -------------------------------------------------------------------------- -- *** mapM -- | -- -- > mapM :: forall b m a. (Monad m) => (a -> m b) -> [a] -> m [b] -- -- Likewise for mapM_. -- -- See 'hSequence' if the result list should also be heterogenous. hMapM :: (Monad m, HMapOut f l (m e)) => f -> HList l -> [m e] hMapM f = hMapOut f -- | GHC doesn't like its own type. -- hMapM_ :: forall m a f e. (Monad m, HMapOut f a (m e)) => f -> a -> m () -- Without explicit type signature, it's Ok. Sigh. -- Anyway, Hugs does insist on a better type. So we restrict as follows: -- hMapM_ :: (Monad m, HMapOut f l (m ())) => f -> HList l -> m () hMapM_ f = sequence_ . disambiguate . hMapM f where disambiguate :: [q ()] -> [q ()] disambiguate = id -- -------------------------------------------------------------------------- -- * Type-level equality for lists ('HEq') instance HEq '[] '[] True instance HEq '[] (e ': l) False instance HEq (e ': l) '[] False instance (HEq e1 e2 b1, HEq l1 l2 b2, br ~ HAnd b1 b2) => HEq (e1 ': l1) (e2 ': l2) br -- -------------------------------------------------------------------------- -- * Ensure a list to contain HNats only -- | We do so constructively, converting the HList whose elements -- are Proxy HNat to [HNat]. The latter kind is unpopulated and -- is present only at the type level. type family HNats (l :: [*]) :: [HNat] type instance HNats '[] = '[] type instance HNats (Proxy n ': l) = n ': HNats l hNats :: HList l -> Proxy (HNats l) hNats = undefined -- -------------------------------------------------------------------------- -- * Membership tests -- | Check to see if an HList contains an element with a given type -- This is a type-level only test class HMember (e1 :: k) (l :: [k]) (b :: Bool) | e1 l -> b instance HMember e1 '[] False instance (HEq e1 e b, HMember' b e1 l br) => HMember e1 (e ': l) br class HMember' (b0 :: Bool) (e1 :: k) (l :: [k]) (b :: Bool) | b0 e1 l -> b instance HMember' True e1 l True instance (HMember e1 l br) => HMember' False e1 l br -- The following is a similar type-only membership test -- It uses the user-supplied curried type equality predicate pred type family HMemberP pred e1 (l :: [*]) :: Bool type instance HMemberP pred e1 '[] = False --type instance HMemberP pred e1 (e ': l) = HMemberP' pred e1 l (ApplyR pred (e1,e)) type family HMemberP' pred e1 (l :: [*]) pb :: Bool type instance HMemberP' pred e1 l (Proxy True) = True type instance HMemberP' pred e1 l (Proxy False) = HMemberP pred e1 l hMember :: HMember e l b => Proxy e -> Proxy l -> Proxy b hMember = undefined -- ** Another type-level membership test -- -- | Check to see if an element e occurs in a list l -- If not, return 'Nothing -- If the element does occur, return 'Just l1 -- where l1 is a type-level list without e class HMemberM (e1 :: k) (l :: [k]) (r :: Maybe [k]) | e1 l -> r instance HMemberM e1 '[] 'Nothing instance (HEq e1 e b, HMemberM1 b e1 (e ': l) res) => HMemberM e1 (e ': l) res class HMemberM1 (b::Bool) (e1 :: k) (l :: [k]) (r::Maybe [k]) | b e1 l -> r instance HMemberM1 True e1 (e ': l) ('Just l) instance (HMemberM e1 l r, HMemberM2 r e1 (e ': l) res) => HMemberM1 False e1 (e ': l) res class HMemberM2 (b::Maybe [k]) (e1 :: k) (l :: [k]) (r::Maybe [k]) | b e1 l -> r instance HMemberM2 Nothing e1 l Nothing instance HMemberM2 (Just l1) e1 (e ': l) (Just (e ': l1)) -- -------------------------------------------------------------------------- -- * Staged equality for lists -- $note removed. use Typeable instead {- instance HStagedEq (HList '[]) (HList '[]) where hStagedEq _ _ = True instance HStagedEq (HList '[]) (HList (e ': l)) where hStagedEq _ _ = False instance HStagedEq (HList (e ': l)) (HList '[]) where hStagedEq _ _ = False instance ( HEq e e' b , HStagedEq (HList l) (HList l') , HStagedEq' b e e' ) => HStagedEq (HList (e ': l)) (HList (e' ': l')) where hStagedEq (HCons e l) (HCons e' l') = (hStagedEq' b e e') && b' where b = proxy :: Proxy b b' = hStagedEq l l' class HStagedEq' (b :: Bool) e e' where hStagedEq' :: Proxy b -> e -> e' -> Bool instance HStagedEq' False e e' where hStagedEq' _ _ _ = False instance Eq e => HStagedEq' True e e where hStagedEq' _ = (==) -} {- -- * Static set property based on HEq class HSet l instance HSet HNil instance (HMember e l HFalse, HSet l) => HSet (HCons e l) -} -- * Find an element in a set based on HEq -- | It is a pure type-level operation class HFind (e :: k) (l :: [k]) (n :: HNat) | e l -> n instance (HEq e1 e2 b, HFind' b e1 l n) => HFind e1 (e2 ': l) n class HFind' (b::Bool) (e :: k) (l::[k]) (n::HNat) | b e l -> n instance HFind' True e l HZero instance HFind e l n => HFind' False e l (HSucc n) -- ** Membership test based on type equality -- | could be an associated type if HEq had one class HTMember e (l :: [*]) (b :: Bool) | e l -> b instance HTMember e '[] False instance (HEq e e' b, HTMember e l b', HOr b b' ~ b'') => HTMember e (e' ': l) b'' hTMember :: HTMember e l b => e -> HList l -> Proxy b hTMember _ _ = Proxy -- * Intersection based on HTMember class HTIntersect l1 l2 l3 | l1 l2 -> l3 where -- | Like 'Data.List.intersect' hTIntersect :: HList l1 -> HList l2 -> HList l3 instance HTIntersect '[] l '[] where hTIntersect _ _ = HNil instance ( HTMember h l1 b , HTIntersectBool b h t l1 l2 ) => HTIntersect (h ': t) l1 l2 where hTIntersect (HCons h t) l1 = hTIntersectBool b h t l1 where b = hTMember h l1 class HTIntersectBool (b :: Bool) h t l1 l2 | b h t l1 -> l2 where hTIntersectBool :: Proxy b -> h -> HList t -> HList l1 -> HList l2 instance HTIntersect t l1 l2 => HTIntersectBool True h t l1 (h ': l2) where hTIntersectBool _ h t l1 = HCons h (hTIntersect t l1) instance HTIntersect t l1 l2 => HTIntersectBool False h t l1 l2 where hTIntersectBool _ _ t l1 = hTIntersect t l1 -- * Turn a heterogeneous list into a homogeneous one -- | Same as @hMapOut Id@ class HList2List l e where hList2List :: HList l -> [e] instance HList2List '[] e where hList2List HNil = [] instance HList2List l e => HList2List (e ': l) e where hList2List (HCons e l) = e:hList2List l -- -------------------------------------------------------------------------- -- * With 'HMaybe' -- ** Turn list in a list of justs -- | the same as @map Just@ -- -- >>> toHJust (2 .*. 'a' .*. HNil) -- H[HJust 2, HJust 'a'] -- -- >>> toHJust2 (2 .*. 'a' .*. HNil) -- H[HJust 2, HJust 'a'] class ToHJust l l' | l -> l', l' -> l where toHJust :: HList l -> HList l' instance ToHJust '[] '[] where toHJust HNil = HNil instance ToHJust l l' => ToHJust (e ': l) (HJust e ': l') where toHJust (HCons e l) = HCons (HJust e) (toHJust l) -- | alternative implementation. The Apply instance is in "Data.HList.FakePrelude". -- A longer type could be inferred. -- toHJust2 :: (HMap' (HJust ()) a b) => HList a -> HList b toHJust2 xs = hMap (HJust ()) xs -- -------------------------------------------------------------------------- -- ** Extract justs from list of maybes -- -- >>> let xs = 2 .*. 'a' .*. HNil -- >>> fromHJust (toHJust xs) == xs -- True class FromHJust l where type FromHJustR l :: [*] fromHJust :: HList l -> HList (FromHJustR l) instance FromHJust '[] where type FromHJustR '[] = '[] fromHJust HNil = HNil instance FromHJust l => FromHJust (HNothing ': l) where type FromHJustR (HNothing ': l) = FromHJustR l fromHJust (HCons _ l) = fromHJust l instance FromHJust l => FromHJust (HJust e ': l) where type FromHJustR (HJust e ': l) = e ': FromHJustR l fromHJust (HCons (HJust e) l) = HCons e (fromHJust l) -- *** alternative implementation -- | A longer type could be inferred. -- fromHJust2 :: (HMap' HFromJust a b) => HList a -> HList b fromHJust2 xs = hMap HFromJust xs data HFromJust = HFromJust instance (hJustA ~ HJust a) => ApplyAB HFromJust hJustA a where applyAB _ (HJust a) = a -- -------------------------------------------------------------------------- -- * Annotated lists data HAddTag t = HAddTag t data HRmTag = HRmTag -- hAddTag :: HMap' (HAddTag t) l r => t -> HList l -> HList r hAddTag t l = hMap (HAddTag t) l -- hRmTag :: HMap HRmTag l => HList l -> HList (HMapR HRmTag l) hRmTag l = hMap HRmTag l instance (et ~ (e,t)) => ApplyAB (HAddTag t) e et where applyAB (HAddTag t) e = (e,t) instance (e' ~ e) => ApplyAB HRmTag (e,t) e' where applyAB _ (e,_) = e -- | Annotate list with a type-level Boolean -- hFlag :: HMap' (HAddTag (Proxy True)) l r => HList l -> HList r hFlag l = hAddTag hTrue l -- -------------------------------------------------------------------------- -- * Splitting by HTrue and HFalse -- | Analogus to Data.List.'Data.List.partition' 'snd' -- -- >>> hSplit $ (2,hTrue) .*. (3,hTrue) .*. (1,hFalse) .*. HNil -- (H[2, 3],H[1]) -- -- it might make more sense to instead have @LVPair Bool e@ -- instead of @(e, Proxy Bool)@ since the former has the same -- runtime representation as @e@ class HSplit l where type HSplitT l :: [*] type HSplitF l :: [*] hSplit :: HList l -> (HList (HSplitT l), HList (HSplitF l)) instance HSplit '[] where type HSplitT '[] = '[] type HSplitF '[] = '[] hSplit HNil = (HNil,HNil) instance HSplit l => HSplit ((e, Proxy True) ': l) where type HSplitT ((e,Proxy True) ': l) = e ': HSplitT l type HSplitF ((e,Proxy True) ': l) = HSplitF l hSplit (HCons (e,_) l) = (HCons e l',l'') where (l',l'') = hSplit l instance HSplit l => HSplit ((e,Proxy False) ': l) where type HSplitT ((e,Proxy False) ': l) = HSplitT l type HSplitF ((e,Proxy False) ': l) = e ': HSplitF l hSplit (HCons (e,_) l) = (l',HCons e l'') where (l',l'') = hSplit l {- Let expansion makes a difference to Hugs: HListPrelude> let x = (hFlag (HCons "1" HNil)) in hSplit x (HCons "1" HNil,HNil) HListPrelude> hSplit (hFlag (HCons "1" HNil)) ERROR - Unresolved overloading *** Type : HSplit (HCons ([Char],HTrue) HNil) a b => (a,b) *** Expression : hSplit (hFlag (HCons "1" HNil)) -}