{-# LANGUAGE CPP #-} {- | The HList library (C) 2004, Oleg Kiselyov, Ralf Laemmel, Keean Schupke Some very basic technology for faking dependent types in Haskell. -} module Data.HList.FakePrelude (module Data.HList.FakePrelude, module Data.Proxy, module Data.Tagged, Monoid(..)) where import Data.Proxy import Data.Tagged import GHC.Prim (Constraint) import GHC.TypeLits import Control.Applicative #if NEW_TYPE_EQ import Data.Type.Equality (type (==)) #endif #if !OLD_TYPEABLE import Data.Typeable #endif #if __GLASGOW_HASKELL__ < 709 import Data.Monoid #endif -- -------------------------------------------------------------------------- -- * A heterogeneous apply operator -- | simpler/weaker version where type information only propagates forward -- with this one. 'applyAB' defined below, is more complicated / verbose to define, -- but it offers better type inference. Most uses have been converted to -- 'applyAB', so there is not much that can be done with 'Apply'. class Apply f a where type ApplyR f a :: * apply :: f -> a -> ApplyR f a {- $note Polymorphic functions are not first-class in haskell. An example of this is: > f op = (op (1 :: Double), op (1 :: Int)) [@RankNTypes@] One solution is to enable `-XRankNTypes` and then write a type signature which might be `f :: (forall a. Num a => a -> a)`. This does not work in the context of HList, since we want to use functions that do not necessarily fall into the pattern of (forall a. c a => a -> a). [@MultipleArguments@] Another solution is to rewrite @op@ to look like > f op1 op2 = (op1 (1:: Double), op2 (1 :: Int)) In some sense this approach works (see HZip), but the result is constrained to as many function applications as you are willing to write (ex. a function that works for records of six entries would look like @hBuild f f f f f f@). [@Defunctionalization@] Therefore the selected solution is to write an instance of 'ApplyAB' for a data type that takes the place of the original function. In other words, > data Fn = Fn > instance ApplyAB Fn a b where applyAB Fn a = actual_fn a Normally you would have been able to pass around the definition actual_fn. [@Type inference / Local functional dependencies@] Note that @class ApplyAB@ has three parameters and no functional dependencies. Instances should be written in the style: > instance (int ~ Int, double ~ Double) => ApplyAB Fn int double > where applyAB _ = fromIntegral rather than the more natural > instance ApplyAB Fn Int Double The first instance allows types to be inferred as if we had @class ApplyAB a b c | a -> b c@, while the second instance only matches if ghc already knows that it needs @ApplyAB Fn Int Double@. Since @applyAB Fn :: Int -> Double@ has a monomorphic type, this trimmed down example does not really make sense because @applyAB (fromIntegral :: Int -> Double)@ is exactly the same. Nontheless, the other uses of @ApplyAB@ follow this pattern, and the benefits are seen when the type of @applyAB Fn@ has at least one type variable. Additional explanation can be found in <http://okmij.org/ftp/Haskell/typecast.html#local-fd local functional dependencies> [@AmbiguousTypes@] Note that ghc only allows AllowAmbiguousTypes when a type signature is provided. Thus expressions such as: > data AddJust = AddJust > instance (y ~ Maybe x) => ApplyAB AddJust x y where > applyAB _ x = Just x > > twoJustsBad = hMap AddJust . hMap AddJust -- ambiguous type Are not accepted without a type signature that references the intermediate \"b\": > twoJusts :: forall r a b c. (HMapCxt r AddJust a b, HMapCxt r AddJust b c) => > r a -> r c > twoJusts a = hMap AddJust (hMap AddJust a :: r b) An apply class with functional dependencies > class ApplyAB' f a b | f a -> b, f b -> a Or with equivalent type families > class (GetB f a ~ b, GetA f b ~ a) => ApplyAB' f a b would not require an annotation for @twoJusts@. However, not all instances of ApplyAB will satisfy those functional dependencies, and thus the number of classes would proliferate. Furthermore, inference does not have to be in one direction only, as the example of 'Data.HList.HList.HMap' shows. -} -- | No constraints on result and argument types class ApplyAB f a b where applyAB :: f -> a -> b {- $fun 'Fun' can be used instead of writing a new instance of 'ApplyAB'. Refer to the definition/source for the the most concise explanation. A more wordy explanation is given below: A type signature needs to be provided on 'Fun' to make it work. Depending on the kind of the parameters to 'Fun', a number of different results happen. [@ex1@] A list of kind @[* -> Constraint]@ produces those constraints on the argument type: >>> :set -XDataKinds >>> let plus1f x = if x < 5 then x+1 else 5 >>> let plus1 = Fun plus1f :: Fun '[Num, Ord] '() >>> :t applyAB plus1 applyAB plus1 :: (Num b, Ord b) => b -> b >>> let xs = [1 .. 8] >>> map (applyAB plus1) xs == map plus1f xs True Also note the use of @'()@ to signal that the result type is the same as the argument type. A single constraint can also be supplied: >>> let succ1 = Fun succ :: Fun Enum '() >>> :t applyAB succ1 applyAB succ1 :: Enum b => b -> b >>> let just = Fun Just :: Fun '[] Maybe >>> :t applyAB just applyAB just :: a -> Maybe a -} data Fun (cxt :: k1) (getb :: k2) = Fun (forall a. FunCxt cxt a => a -> FunApp getb a) {- | see 'Fun'. The only difference here is that the argument type is calculated from the result type. >>> let rd = Fun' read :: Fun' Read String >>> :t applyAB rd applyAB rd :: Read b => [Char] -> b >>> let fromJust' = Fun' (\(Just a) -> a) :: Fun' '[] Maybe >>> :t applyAB fromJust' applyAB fromJust' :: Maybe b -> b Note this use of Fun' means we don't have to get the b out of @Maybe b@, -} data Fun' (cxt :: k1) (geta :: k2) = Fun' (forall b. FunCxt cxt b => FunApp geta b -> b) type family FunApp (fns :: k) a type instance FunApp (fn :: *) a = fn type instance FunApp (fn :: * -> *) a = fn a type instance FunApp (fn :: ()) a = a type family FunCxt (cxts :: k) a :: Constraint type instance FunCxt (x ': xs) a = (x a, FunCxt xs a) type instance FunCxt (cxt :: * -> Constraint) a = cxt a type instance FunCxt '[] a = () -- | should there be so many ways to write no constraint? type instance FunCxt (cxt :: ()) a = () type instance FunCxt (cxt :: *) a = (cxt ~ a) instance (FunCxt cxt a, FunApp getb a ~ b) => ApplyAB (Fun cxt getb) a b where applyAB (Fun f) x = f x instance (FunCxt cxt b, FunApp geta b ~ a) => ApplyAB (Fun' cxt geta) a b where applyAB (Fun' f) x = f x -- ** Simple useful instances of Apply -- | note this function will only be available at a single type -- (that is, @hMap succ@ will only work on 'HList' that contain -- only one type) instance (x' ~ x, y' ~ y) => ApplyAB (x' -> y') x y where applyAB f x = f x {- | print. An alternative implementation could be: >>> let hPrint = Fun print :: Fun Show (IO ()) This produces: >>> :t applyAB hPrint applyAB hPrint :: Show a => a -> IO () -} data HPrint = HPrint instance (io ~ IO (), Show x) => ApplyAB HPrint x io where applyAB _ x = print x {- | read >>> applyAB HRead "5.0" :: Double 5.0 -} data HRead = HRead instance (String ~ string, Read a) => ApplyAB HRead string a where applyAB _ x = read x -- | show data HShow = HShow instance (String ~ string, Show a) => ApplyAB HShow a string where applyAB _ x = show x {- | Compose two instances of 'ApplyAB' >>> applyAB (HComp HRead HShow) (5::Double) :: Double 5.0 -} data HComp g f = HComp g f -- ^ @g . f@ instance forall f g a b c. (ApplyAB f a b, ApplyAB g b c) => ApplyAB (HComp g f) a c where applyAB ~(HComp g f) x = applyAB g (applyAB f x :: b) {- | @app Comp (f,g) = g . f@. Works like: >>> applyAB Comp (succ, pred) 'a' 'a' >>> applyAB Comp (toEnum :: Int -> Char, fromEnum) 10 10 Note that defaulting will sometimes give you the wrong thing > used to work (with associated types calculating result/argument types) > >>> applyAB Comp (fromEnum, toEnum) 'a' > *** Exception: Prelude.Enum.().toEnum: bad argument -} data Comp = Comp instance (y ~ y', fg ~ (x -> y, y' -> z), r ~ (x -> z)) => ApplyAB Comp fg r where applyAB _ (f,g) = g . f -- | (\(a,b) -> f a >> b) newtype HSeq x = HSeq x instance (Monad m, ApplyAB f x fx, fx ~ m (), pair ~ (x,m ()), ApplyAB f x (m ()) ) => ApplyAB (HSeq f) pair fx where applyAB (HSeq f) (x,c) = do asVoid (applyAB f x); c where asVoid :: m () -> m () asVoid t = t -- | @HJust ()@ is a placeholder for a function that applies the 'HJust' constructor instance hJustA ~ HJust a => ApplyAB (HJust t) a hJustA where applyAB _ a = HJust a -- | 'flip' data HFlip = HFlip instance (f1 ~ (a -> b -> c), f2 ~ (b -> a -> c)) => ApplyAB HFlip f1 f2 where applyAB _ = flip -- | 'fmap' newtype HFmap f = HFmap f instance (x ~ t a, y ~ t b, Functor t, ApplyAB f a b) => ApplyAB (HFmap f) x y where applyAB (HFmap f) = fmap (applyAB f) -- | 'liftA2' newtype LiftA2 f = LiftA2 f instance (ApplyAB f (x,y) z, mz ~ m z, mxy ~ (m x, m y), Applicative m) => ApplyAB (LiftA2 f) mxy mz where applyAB (LiftA2 f) xy = liftA2 (curry (applyAB f)) `uncurry` xy -- | 'untag' data HUntag = HUntag instance (Tagged t x ~ tx) => ApplyAB HUntag tx x where applyAB _ (Tagged x) = x -- -------------------------------------------------------------------------- -- * Proxy -- -- $note see "Data.Proxy" -- | A special 'Proxy' for record labels, polykinded data Label l = Label labelToProxy :: Label l -> Proxy l labelToProxy _ = Proxy class ShowLabel l where showLabel :: Label l -> String -- -------------------------------------------------------------------------- -- * Booleans {- $boolNote GHC already lifts booleans, defined as > data Bool = True | False to types: Bool becomes kind and True and False (also denoted by 'True and 'False) become nullary type constructors. The above line is equivalent to > data HTrue > data HFalse > class HBool x > instance HBool HTrue > instance HBool HFalse -} -- ** Value-level proxies hTrue :: Proxy True ; hTrue = Proxy hFalse :: Proxy False; hFalse = Proxy -- ** Conjunction type family HAnd (t1 :: Bool) (t2 :: Bool) :: Bool type instance HAnd False t = False type instance HAnd True t = t -- | `demote' to values hAnd :: Proxy t1 -> Proxy t2 -> Proxy (HAnd t1 t2) hAnd _ _ = Proxy -- ** Disjunction type family HOr (t1 :: Bool) (t2 :: Bool) :: Bool type instance HOr False t = t type instance HOr True t = True -- | `demote' to values hOr :: Proxy t1 -> Proxy t2 -> Proxy (HOr t1 t2) hOr _ _ = Proxy {- $boolHistoricalNote Compare with the original code based on functional dependencies: > class (HBool t, HBool t', HBool t'') => HOr t t' t'' | t t' -> t'' > where > hOr :: t -> t' -> t'' > instance HOr HFalse HFalse HFalse > where > hOr _ _ = hFalse > instance HOr HTrue HFalse HTrue > where > hOr _ _ = hTrue > instance HOr HFalse HTrue HTrue > where > hOr _ _ = hTrue > instance HOr HTrue HTrue HTrue > where > hOr _ _ = hTrue -} type family HNot (x :: Bool) :: Bool type instance HNot True = False type instance HNot False = True -- | as compared with 'HNot' this version is injective class HNotFD (b :: Bool) (nb :: Bool) | b -> nb, nb -> b instance HNotFD True False instance HNotFD False True hNot :: HNotFD a notA => Proxy a -> Proxy notA hNot _ = Proxy class HCond (t :: Bool) x y z | t x y -> z where hCond :: Proxy t -> x -> y -> z instance HCond False x y y where hCond _ _ y = y instance HCond True x y x where hCond _ x _ = x -- ** Boolean equivalence type family HBoolEQ (t1 :: Bool) (t2 :: Bool) :: Bool type instance HBoolEQ False False = True type instance HBoolEQ False True = False type instance HBoolEQ True False = False type instance HBoolEQ True True = True -- We could define all kinds of further Boolean operations. -- We omit everything what's not needed for the code in the paper. -- -------------------------------------------------------------------------- -- * Naturals -- | The data type to be lifted to the type level data HNat = HZero | HSucc HNat hZero :: Proxy HZero; hZero = Proxy hSucc :: Proxy (n :: HNat) -> Proxy (HSucc n); hSucc _ = Proxy hPred :: Proxy (HSucc n) -> Proxy n; hPred _ = Proxy class HNat2Integral (n::HNat) where hNat2Integral :: Integral i => Proxy n -> i type family HNat2Nat (n :: HNat) :: Nat type instance HNat2Nat HZero = 0 type instance HNat2Nat (HSucc n) = 1 + HNat2Nat n #if MIN_VERSION_base(4,7,0) {- Instead convert HNat to GHC.TypeLits.'Nat' with 'HNat2Nat' and use functions from that module to produce the 'Integer' -} instance KnownNat (HNat2Nat n) => HNat2Integral n where hNat2Integral _ = fromIntegral (natVal (Proxy :: Proxy (HNat2Nat n))) #else {- doesn't work: gives "No instance for (SingI Nat (1 + (1 + 0)))" instance SingI (HNat2Nat n) => HNat2Integral n where hNat2Integral _ = fromIntegral (fromSing (sing :: Sing (HNat2Nat n))) -} -- | a slow (at runtime) implementation for ghc 7.6: instance HNat2Integral HZero where hNat2Integral _ = 0 instance HNat2Integral n => HNat2Integral (HSucc n) where hNat2Integral n = hNat2Integral (hPred n) + 1 #endif class HNats2Integrals (ns :: [HNat]) where hNats2Integrals :: Integral i => Proxy ns -> [i] instance HNats2Integrals '[] where hNats2Integrals _ = [] instance (HNats2Integrals ns, HNat2Integral n) => HNats2Integrals (n ': ns) where hNats2Integrals _ = hNat2Integral (Proxy :: Proxy n) : hNats2Integrals (Proxy :: Proxy ns) -- | Equality on natural numbers -- (eventually to be subsumed by the universal polykinded HEq) type family HNatEq (t1 :: HNat) (t2 :: HNat) :: Bool type instance HNatEq HZero HZero = True type instance HNatEq HZero (HSucc n) = False type instance HNatEq (HSucc n) HZero = False type instance HNatEq (HSucc n) (HSucc n') = HNatEq n n' -- | Less than type family HLt (x :: HNat) (y :: HNat) :: Bool type instance HLt HZero HZero = False type instance HLt HZero (HSucc n) = True type instance HLt (HSucc n) HZero = False type instance HLt (HSucc n) (HSucc n') = HLt n n' hLt :: Proxy x -> Proxy y -> Proxy (HLt x y) hLt _ _ = Proxy -- | Less than or equal to type family HLe (x :: HNat) (y :: HNat) :: Bool type instance HLe HZero HZero = True type instance HLe (HSucc x) y = HLt x y hLe :: Proxy x -> Proxy y -> Proxy (HLe x y) hLe _ _ = Proxy -- | @HDiv2 x@ behaves like @x `div` 2@ type family HDiv2 (x :: HNat) :: HNat type instance HDiv2 HZero = HZero type instance HDiv2 (HSucc HZero) = HZero type instance HDiv2 (HSucc (HSucc a)) = HSucc (HDiv2 a) -- -------------------------------------------------------------------------- -- * Maybies -- $maybiesNote We cannot use lifted Maybe since the latter are not populated data HNothing = HNothing deriving Show newtype HJust x = HJust x deriving Show -- -------------------------------------------------------------------------- -- * Polykinded Equality for types -- | We have to use Functional dependencies for now, -- for the sake of the generic equality. class HEq (x :: k) (y :: k) (b :: Bool) | x y -> b -- | Equality for types that may have different kinds. This definition -- allows operations on @Record [Tagged \"x\" a, Tagged 2 b]@ to work -- as expected. type HEqK (x :: k1) (y :: k2) (b :: Bool) = HEq (Proxy x) (Proxy y) b #if NEW_TYPE_EQ -- | Uses @(==) :: * -> * -> Bool@ because -- there is no polykinded instance of (==), -- since that one overlaps "more productive" -- instances that pattern match on types. instance ((Proxy x == Proxy y) ~ b) => HEq x y b #endif hEq :: HEq x y b => x -> y -> Proxy b hEq _ _ = Proxy -- | this class generalizes HEq by allowing the choice of @f@ to allow -- equating only part of x and y class HEqByFn f => HEqBy (f :: t) (x :: k) (y :: k) (b :: Bool) | f x y -> b -- | Every instance of this class should have an instance of 'HEqBy' class HEqByFn f -- * Arity type Arity f n = (ArityFwd f n, ArityRev f n) -- | calculate the number of arguments a function can take class ArityFwd (f :: *) (n :: HNat) | f -> n -- | given the number of arguments a function can take, make sure -- the function type actually matches class ArityRev (f :: *) (n :: HNat) -- n -> f -- if we had -XDysfunctionalDependencies instance ArityRev f HZero instance (xf ~ (x -> f), ArityRev f n) => ArityRev xf (HSucc n) -- -------------------------------------------------------------------------- -- * Staged equality -- | -- -- * Establish type equality statically -- -- * Establish remaining value-level equality dynamically -- -- removed: use typeable -- -------------------------------------------------------------------------- -- * Type-safe cast -- no longer need. We use a a ~ b -- * Cast -- | Named after 'Data.Typeable.cast', which behaves the same at runtime. -- One difference is that there is a HCast instance for every type, while -- 'Typeable' instances can be missing sometimes. class HCast x y where hCast :: x -> Maybe y instance (HEq x y b, HCast1 b x y) => HCast x y where hCast = hCast1 (Proxy :: Proxy b) -- | helper for 'HCast' class HCast1 (b :: Bool) x y where hCast1 :: Proxy b -> x -> Maybe y instance (x ~ y) => HCast1 True x y where hCast1 _ x = Just x instance HCast1 False x y where hCast1 _ _ = Nothing -- -------------------------------------------------------------------------- -- * Error messages -- | A class without instances for explicit failure class Fail x -- ** Uses of fail -- $note these could be replaced by `'("helpful message", l)`, -- but these look better. data ExtraField l data FieldNotFound l #if OLD_TYPEABLE type TypeablePolyK a = (() :: Constraint) #else type TypeablePolyK (a :: k) = Typeable a #endif -- * Constraining Lists -- ** Length -- | Ensure two lists have the same length. We do case analysis on the -- first one (hence the type must be known to the type checker). -- In contrast, the second list may be a type variable. class SameLength' (es1 :: [k]) (es2 :: [m]) instance (es2 ~ '[]) => SameLength' '[] es2 instance (SameLength' xs ys, es2 ~ (y ': ys)) => SameLength' (x ': xs) es2 {- | symmetrical version of 'SameLength''. Written as a class instead of > type SameLength a b = (SameLength' a b, SameLength' b a) since ghc expands type synonyms, but not classes (and it seems to have the same result) -} class (SameLength' x y, SameLength' y x) => SameLength (x :: [k]) (y :: [m]) where {- | @SameLength x y => Equality (r x) (q y) (r x) (q y)@ used like 'Control.Lens.simple', except it restricts the type-level lists involved to have the same length, without fixing the type of container or the elements in the list. -} sameLength :: r x `p` f (q y) -> r x `p` f (q y) sameLength = id asLengthOf :: SameLength x y => r x -> s y -> r x asLengthOf = const instance (SameLength' x y, SameLength' y x) => SameLength x y type family SameLengths (xs :: [[k]]) :: Constraint type instance SameLengths (x ': y ': ys) = (SameLength x y, SameLengths (y ': ys)) type instance SameLengths '[] = () type instance SameLengths '[x] = () -- ** Labels class SameLabels (x :: k) (y :: m) {- | @sameLabels@ constrains the type of an optic, such that the labels (@t@ in @Tagged t a@) are the same. @x@ or @y@ may have more elements than the other, in which case the elements at the end of the longer list do not have their labels constrained. see also 'sameLength' -} sameLabels :: SameLabels x y => p (r x) (f (q y)) -> p (r x) (f (q y)) sameLabels = id -- instances for [*] kind instance SameLabels '[] '[] instance SameLabels '[] (x ': xs) instance SameLabels (x ': xs) '[] instance (SameLabels x y, SameLabels xs ys) => SameLabels (x ': xs) (y ': ys) instance (Label t ~ Label t') => SameLabels (Label t) (Tagged t' a) instance (Label t ~ Label t') => SameLabels (Label t) (Label t') instance (Label t ~ Label t') => SameLabels (Label t) (t' :: Symbol) instance SameLabels (Label t) s => SameLabels (t :: Symbol) s instance SameLabels (Label t) s => SameLabels (Tagged t a) s -- ** A list has only Tagged values -- | The 'Record', 'Variant', 'TIP', 'TIC' type constructors only make -- sense when they are applied to an instance of this class class HAllTaggedLV (ps :: [*]) instance HAllTaggedLV '[] instance (HAllTaggedLV xs, x ~ Tagged t v) => HAllTaggedLV (x ': xs) -- | see Data.HList.Record.'zipTagged' type family ZipTagged (ts :: [k]) (vs :: [*]) :: [*] type instance ZipTagged (Label t ': ts) (v ': vs) = Tagged t v ': ZipTagged ts vs type instance ZipTagged ((t :: Symbol) ': ts) (v ': vs) = Tagged t v ': ZipTagged ts vs type instance ZipTagged '[] '[] = '[]