{-# LANGUAGE GADTs, TypeFamilies, TypeOperators, ScopedTypeVariables, CPP #-} {-# LANGUAGE StandaloneDeriving, FlexibleInstances #-} {-# OPTIONS_GHC -Wall -fenable-rewrite-rules #-} -- ScopedTypeVariables works around a 6.10 bug. The forall keyword is -- supposed to be recognized in a RULES pragma. ---------------------------------------------------------------------- -- | -- Module : Data.MemoTrie -- Copyright : (c) Conal Elliott 2008-2012 -- License : BSD3 -- -- Maintainer : conal@conal.net -- Stability : experimental -- -- Trie-based memoizer -- -- Adapted from sjanssen's paste: \"a lazy trie\" <http://hpaste.org/3839>, -- which I think is based on Ralf Hinze's paper "Memo Functions, -- Polytypically!". ---------------------------------------------------------------------- module Data.MemoTrie ( HasTrie(..), (:->:)(..) , domain, idTrie, (@.@) -- , trie2, trie3, untrie2, untrie3 , memo, memo2, memo3, mup , inTrie, inTrie2, inTrie3 -- , untrieBits ) where -- Export the parts of HasTrie separately in order to get the associated data -- type constructors, so I can define instances of other classes on them. import Data.Bits import Data.Word import Data.Int import Control.Applicative import Control.Arrow (first,(&&&)) import Data.Monoid import Data.Function (on) import Data.Void -- import Prelude hiding (id,(.)) -- import Control.Category -- import Control.Arrow infixr 0 :->: -- | Mapping from all elements of @a@ to the results of some function class HasTrie a where -- | Representation of trie with domain type @a@ data (:->:) a :: * -> * -- | Create the trie for the entire domain of a function trie :: (a -> b) -> (a :->: b) -- | Convert a trie to a function, i.e., access a field of the trie untrie :: (a :->: b) -> (a -> b) -- | List the trie elements. Order of keys (@:: a@) is always the same. enumerate :: (a :->: b) -> [(a,b)] -- | Domain elements of a trie domain :: HasTrie a => [a] domain = map fst (enumerate (trie (const oops))) where oops = error "Data.MemoTrie.domain: range element evaluated." -- Hm: domain :: [Bool] doesn't produce any output. instance (HasTrie a, Eq b) => Eq (a :->: b) where (==) = (==) `on` (map snd . enumerate) instance (HasTrie a, Show a, Show b) => Show (a :->: b) where show t = "Trie: " ++ show (enumerate t) {- trie2 :: (HasTrie a, HasTrie b) => (a -> b -> c) -> (a :->: b :->: c) -- trie2 h = trie $ \ a -> trie $ \ b -> h a b -- trie2 h = trie $ \ a -> trie (h a) trie2 h = trie (trie . h) -- trie2 h = trie (fmap trie h) -- trie2 = (fmap.fmap) trie trie trie3 :: (HasTrie a, HasTrie b, HasTrie c) => (a -> b -> c -> d) -> (a :->: b :->: c :->: d) trie3 h = trie (trie2 . h) untrie2 :: (HasTrie a, HasTrie b) => (a :->: b :->: c)-> (a -> b -> c) untrie2 tt = untrie . untrie tt untrie3 :: (HasTrie a, HasTrie b, HasTrie c) => (a :->: b :->: c :->: d)-> (a -> b -> c -> d) untrie3 tt = untrie2 . untrie tt -} {-# RULES "trie/untrie" forall t. trie (untrie t) = t #-} -- Don't include the dual rule: -- "untrie/trie" forall f. untrie (trie f) = f -- which would defeat memoization. -- -- TODO: experiment with rule application. Maybe re-enable "untrie/trie" -- but fiddle with phases, so it won't defeat 'memo'. -- | Trie-based function memoizer memo :: HasTrie t => (t -> a) -> (t -> a) memo = untrie . trie -- | Memoize a binary function, on its first argument and then on its -- second. Take care to exploit any partial evaluation. memo2 :: (HasTrie s,HasTrie t) => (s -> t -> a) -> (s -> t -> a) -- | Memoize a ternary function on successive arguments. Take care to -- exploit any partial evaluation. memo3 :: (HasTrie r,HasTrie s,HasTrie t) => (r -> s -> t -> a) -> (r -> s -> t -> a) -- | Lift a memoizer to work with one more argument. mup :: HasTrie t => (b -> c) -> (t -> b) -> (t -> c) mup mem f = memo (mem . f) memo2 = mup memo memo3 = mup memo2 -- | Apply a unary function inside of a trie inTrie :: (HasTrie a, HasTrie c) => ((a -> b) -> (c -> d)) -> ((a :->: b) -> (c :->: d)) inTrie = untrie ~> trie -- | Apply a binary function inside of a trie inTrie2 :: (HasTrie a, HasTrie c, HasTrie e) => ((a -> b) -> (c -> d) -> (e -> f)) -> ((a :->: b) -> (c :->: d) -> (e :->: f)) inTrie2 = untrie ~> inTrie -- | Apply a ternary function inside of a trie inTrie3 :: (HasTrie a, HasTrie c, HasTrie e, HasTrie g) => ((a -> b) -> (c -> d) -> (e -> f) -> (g -> h)) -> ((a :->: b) -> (c :->: d) -> (e :->: f) -> (g :->: h)) inTrie3 = untrie ~> inTrie2 ---- Instances instance HasTrie Void where -- As suggested by Audun Skaugen data Void :->: a = VoidTrie trie _ = VoidTrie untrie VoidTrie = absurd enumerate VoidTrie = [] instance HasTrie () where newtype () :->: a = UnitTrie a trie f = UnitTrie (f ()) untrie (UnitTrie a) = \ () -> a enumerate (UnitTrie a) = [((),a)] -- Proofs of inverse properties: {- untrie (trie f) == { trie def } untrie (UnitTrie (f ())) == { untrie def } \ () -> (f ()) == { const-unit } f trie (untrie (UnitTrie a)) == { untrie def } trie (\ () -> a) == { trie def } UnitTrie ((\ () -> a) ()) == { beta-reduction } UnitTrie a Oops -- the last step of the first direction is bogus when f is non-strict. Can be fixed by using @const a@ in place of @\ () -> a@, but I can't do the same for other types, like integers or sums. All of these proofs have this same bug, unless we restrict ourselves to memoizing hyper-strict functions. -} instance HasTrie Bool where data Bool :->: x = BoolTrie x x trie f = BoolTrie (f False) (f True) untrie (BoolTrie f t) = if' f t enumerate (BoolTrie f t) = [(False,f),(True,t)] -- | Conditional with boolean last. -- Spec: @if' (f False) (f True) == f@ if' :: x -> x -> Bool -> x if' t _ False = t if' _ e True = e {- untrie (trie f) == { trie def } untrie (BoolTrie (f False) (f True)) == { untrie def } if' (f False) (f True) == { if' spec } f trie (untrie (BoolTrie f t)) == { untrie def } trie (if' f t) == { trie def } BoolTrie (if' f t False) (if' f t True) == { if' spec } BoolTrie f t -} instance (HasTrie a, HasTrie b) => HasTrie (Either a b) where data (Either a b) :->: x = EitherTrie (a :->: x) (b :->: x) trie f = EitherTrie (trie (f . Left)) (trie (f . Right)) untrie (EitherTrie s t) = either (untrie s) (untrie t) enumerate (EitherTrie s t) = enum' Left s `weave` enum' Right t enum' :: (HasTrie a) => (a -> a') -> (a :->: b) -> [(a', b)] enum' f = (fmap.first) f . enumerate weave :: [a] -> [a] -> [a] [] `weave` as = as as `weave` [] = as (a:as) `weave` bs = a : (bs `weave` as) {- untrie (trie f) == { trie def } untrie (EitherTrie (trie (f . Left)) (trie (f . Right))) == { untrie def } either (untrie (trie (f . Left))) (untrie (trie (f . Right))) == { untrie . trie } either (f . Left) (f . Right) == { either } f trie (untrie (EitherTrie s t)) == { untrie def } trie (either (untrie s) (untrie t)) == { trie def } EitherTrie (trie (either (untrie s) (untrie t) . Left)) (trie (either (untrie s) (untrie t) . Right)) == { either } EitherTrie (trie (untrie s)) (trie (untrie t)) == { trie . untrie } EitherTrie s t -} instance (HasTrie a, HasTrie b) => HasTrie (a,b) where newtype (a,b) :->: x = PairTrie (a :->: (b :->: x)) trie f = PairTrie (trie (trie . curry f)) untrie (PairTrie t) = uncurry (untrie . untrie t) enumerate (PairTrie tt) = [ ((a,b),x) | (a,t) <- enumerate tt , (b,x) <- enumerate t ] {- untrie (trie f) == { trie def } untrie (PairTrie (trie (trie . curry f))) == { untrie def } uncurry (untrie . untrie (trie (trie . curry f))) == { untrie . trie } uncurry (untrie . trie . curry f) == { untrie . untrie } uncurry (curry f) == { uncurry . curry } f trie (untrie (PairTrie t)) == { untrie def } trie (uncurry (untrie . untrie t)) == { trie def } PairTrie (trie (trie . curry (uncurry (untrie . untrie t)))) == { curry . uncurry } PairTrie (trie (trie . untrie . untrie t)) == { trie . untrie } PairTrie (trie (untrie t)) == { trie . untrie } PairTrie t -} instance (HasTrie a, HasTrie b, HasTrie c) => HasTrie (a,b,c) where newtype (a,b,c) :->: x = TripleTrie (((a,b),c) :->: x) trie f = TripleTrie (trie (f . trip)) untrie (TripleTrie t) = untrie t . detrip enumerate (TripleTrie t) = enum' trip t trip :: ((a,b),c) -> (a,b,c) trip ((a,b),c) = (a,b,c) detrip :: (a,b,c) -> ((a,b),c) detrip (a,b,c) = ((a,b),c) instance HasTrie x => HasTrie [x] where newtype [x] :->: a = ListTrie (Either () (x,[x]) :->: a) trie f = ListTrie (trie (f . list)) untrie (ListTrie t) = untrie t . delist enumerate (ListTrie t) = enum' list t list :: Either () (x,[x]) -> [x] list = either (const []) (uncurry (:)) delist :: [x] -> Either () (x,[x]) delist [] = Left () delist (x:xs) = Right (x,xs) #define WordInstance(Type,TrieType)\ instance HasTrie Type where \ newtype Type :->: a = TrieType ([Bool] :->: a);\ trie f = TrieType (trie (f . unbits));\ untrie (TrieType t) = untrie t . bits;\ enumerate (TrieType t) = enum' unbits t WordInstance(Word,WordTrie) WordInstance(Word8,Word8Trie) WordInstance(Word16,Word16Trie) WordInstance(Word32,Word32Trie) WordInstance(Word64,Word64Trie) -- instance HasTrie Word where -- newtype Word :->: a = WordTrie ([Bool] :->: a) -- trie f = WordTrie (trie (f . unbits)) -- untrie (WordTrie t) = untrie t . bits -- enumerate (WordTrie t) = enum' unbits t -- | Extract bits in little-endian order bits :: (Num t, Bits t) => t -> [Bool] bits 0 = [] bits x = testBit x 0 : bits (shiftR x 1) -- | Convert boolean to 0 (False) or 1 (True) unbit :: Num t => Bool -> t unbit False = 0 unbit True = 1 -- | Bit list to value unbits :: (Num t, Bits t) => [Bool] -> t unbits [] = 0 unbits (x:xs) = unbit x .|. shiftL (unbits xs) 1 instance HasTrie Char where newtype Char :->: a = CharTrie (Int :->: a) untrie (CharTrie t) n = untrie t (fromEnum n) trie f = CharTrie (trie (f . toEnum)) enumerate (CharTrie t) = enum' toEnum t -- Although Int is a Bits instance, we can't use bits directly for -- memoizing, because the "bits" function gives an infinite result, since -- shiftR (-1) 1 == -1. Instead, convert between Int and Word, and use -- a Word trie. Any Integral type can be handled similarly. #define IntInstance(IntType,WordType,TrieType) \ instance HasTrie IntType where \ newtype IntType :->: a = TrieType (WordType :->: a); \ untrie (TrieType t) n = untrie t (fromIntegral n); \ trie f = TrieType (trie (f . fromIntegral)); \ enumerate (TrieType t) = enum' fromIntegral t IntInstance(Int,Word,IntTrie) IntInstance(Int8,Word8,Int8Trie) IntInstance(Int16,Word16,Int16Trie) IntInstance(Int32,Word32,Int32Trie) IntInstance(Int64,Word64,Int64Trie) -- For unbounded integers, we don't have a corresponding Word type, so -- extract the sign bit. instance HasTrie Integer where newtype Integer :->: a = IntegerTrie ((Bool,[Bool]) :->: a) trie f = IntegerTrie (trie (f . unbitsZ)) untrie (IntegerTrie t) = untrie t . bitsZ enumerate (IntegerTrie t) = enum' unbitsZ t unbitsZ :: (Num n, Bits n) => (Bool,[Bool]) -> n unbitsZ (positive,bs) = sig (unbits bs) where sig | positive = id | otherwise = negate bitsZ :: (Num n, Ord n, Bits n) => n -> (Bool,[Bool]) bitsZ = (>= 0) &&& (bits . abs) -- TODO: make these definitions more systematic. ---- Instances {- The \"semantic function\" 'untrie' is a morphism over 'Monoid', 'Functor', 'Applicative', 'Monad', 'Category', and 'Arrow', i.e., untrie mempty == mempty untrie (s `mappend` t) == untrie s `mappend` untrie t untrie (fmap f t) == fmap f (untrie t) untrie (pure a) == pure a untrie (tf <*> tx) == untrie tf <*> untrie tx untrie (return a) == return a untrie (u >>= k) == untrie u >>= untrie . k untrie id == id untrie (s . t) == untrie s . untrie t untrie (arr f) == arr f untrie (first t) == first (untrie t) These morphism properties imply that all of the expected laws hold, assuming that we interpret equality semantically (or observationally). For instance, untrie (mempty `mappend` a) == untrie mempty `mappend` untrie a == mempty `mappend` untrie a == untrie a untrie (fmap f (fmap g a)) == fmap f (untrie (fmap g a)) == fmap f (fmap g (untrie a)) == fmap (f.g) (untrie a) == untrie (fmap (f.g) a) The implementation instances then follow from applying 'trie' to both sides of each of these morphism laws. -} {- instance (HasTrie a, Monoid b) => Monoid (a :->: b) where mempty = trie mempty s `mappend` t = trie (untrie s `mappend` untrie t) instance HasTrie a => Functor ((:->:) a) where fmap f t = trie (fmap f (untrie t)) instance HasTrie a => Applicative ((:->:) a) where pure b = trie (pure b) tf <*> tx = trie (untrie tf <*> untrie tx) instance HasTrie a => Monad ((:->:) a) where return a = trie (return a) u >>= k = trie (untrie u >>= untrie . k) -- instance Category (:->:) where -- id = trie id -- s . t = trie (untrie s . untrie t) -- instance Arrow (:->:) where -- arr f = trie (arr f) -- first t = trie (first (untrie t)) -} -- Simplify, using inTrie, inTrie2 instance (HasTrie a, Monoid b) => Monoid (a :->: b) where mempty = trie mempty mappend = inTrie2 mappend instance HasTrie a => Functor ((:->:) a) where fmap f = inTrie (fmap f) instance HasTrie a => Applicative ((:->:) a) where pure b = trie (pure b) (<*>) = inTrie2 (<*>) instance HasTrie a => Monad ((:->:) a) where return a = trie (return a) u >>= k = trie (untrie u >>= untrie . k) -- | Identity trie idTrie :: HasTrie a => a :->: a idTrie = trie id infixr 9 @.@ -- | Trie composition (@.@) :: (HasTrie a, HasTrie b) => (b :->: c) -> (a :->: b) -> (a :->: c) (@.@) = inTrie2 (.) -- instance Category (:->:) where -- id = idTrie -- (.) = (.:) -- instance Arrow (:->:) where -- arr f = trie (arr f) -- first = inTrie first {- Correctness of these instances follows by applying 'untrie' to each side of each definition and using the property @'untrie' . 'trie' == 'id'@. The `Category` and `Arrow` instances don't quite work, however, because of necessary but disallowed `HasTrie` constraints on the domain type. -} ---- To go elsewhere -- Matt Hellige's notation for @argument f . result g@. -- <http://matt.immute.net/content/pointless-fun> (~>) :: (a' -> a) -> (b -> b') -> ((a -> b) -> (a' -> b')) g ~> f = (f .) . (. g) {- -- Examples f1,f1' :: Int -> Int f1 n = n + n f1' = memo f1 -}