-- Copyright 2023 Lennart Augustsson -- See LICENSE file for full license. module Data.Function(module Data.Function) where import Prelude() -- do not import Prelude import Primitives import Data.Bool_Type --import Data.Tuple infixr 0 $ ($) :: forall a b . (a -> b) -> a -> b ($) f x = f x infixr 0 $! ($!) :: forall a b . (a -> b) -> a -> b ($!) f x = x `primSeq` f x infixr 9 . (.) :: forall a b c . (b -> c) -> (a -> b) -> (a -> c) (.) f g x = f (g x) id :: forall a . a -> a id x = x const :: forall a b . a -> b -> a const x _ = x flip :: forall a b c . (b -> a -> c) -> a -> b -> c flip f a b = f b a fix :: forall a . (a -> a) -> a fix = primFix infixl 0 `on` on :: forall a b c . (a -> a -> b) -> (c -> a) -> (c -> c -> b) on op sel x y = op (sel x) (sel y) asTypeOf :: forall a . a -> a -> a asTypeOf = const seq :: forall a b . a -> b -> b seq = primSeq until :: forall a . (a -> Bool) -> (a -> a) -> a -> a until p f = rec where rec x = if p x then x else rec (f x) infixl 1 & (&) :: forall a b . a -> (a -> b) -> b (&) x f = f x applyWhen :: forall a . Bool -> (a -> a) -> a -> a applyWhen True f x = f x applyWhen False _ x = x