{-# LANGUAGE Trustworthy #-} -- can't use Safe due to IsList instance {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Data.List.NonEmpty -- Copyright : (C) 2011-2015 Edward Kmett, -- (C) 2010 Tony Morris, Oliver Taylor, Eelis van der Weegen -- License : BSD-style (see the file LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- A 'NonEmpty' list is one which always has at least one element, but -- is otherwise identical to the traditional list type in complexity -- and in terms of API. You will almost certainly want to import this -- module @qualified@. -- -- @since 4.9.0.0 ---------------------------------------------------------------------------- module Data.List.NonEmpty ( -- * The type of non-empty streams NonEmpty(..) -- * Non-empty stream transformations , map -- :: (a -> b) -> NonEmpty a -> NonEmpty b , intersperse -- :: a -> NonEmpty a -> NonEmpty a , scanl -- :: Foldable f => (b -> a -> b) -> b -> f a -> NonEmpty b , scanr -- :: Foldable f => (a -> b -> b) -> b -> f a -> NonEmpty b , scanl1 -- :: (a -> a -> a) -> NonEmpty a -> NonEmpty a , scanr1 -- :: (a -> a -> a) -> NonEmpty a -> NonEmpty a , transpose -- :: NonEmpty (NonEmpty a) -> NonEmpty (NonEmpty a) , sortBy -- :: (a -> a -> Ordering) -> NonEmpty a -> NonEmpty a , sortWith -- :: Ord o => (a -> o) -> NonEmpty a -> NonEmpty a -- * Basic functions , length -- :: NonEmpty a -> Int , head -- :: NonEmpty a -> a , tail -- :: NonEmpty a -> [a] , last -- :: NonEmpty a -> a , init -- :: NonEmpty a -> [a] , singleton -- :: a -> NonEmpty a , (<|), cons -- :: a -> NonEmpty a -> NonEmpty a , uncons -- :: NonEmpty a -> (a, Maybe (NonEmpty a)) , unfoldr -- :: (a -> (b, Maybe a)) -> a -> NonEmpty b , sort -- :: Ord a => NonEmpty a -> NonEmpty a , sortOn -- :: Ord b => (a -> b) -> NonEmpty a -> NonEmpty a , reverse -- :: NonEmpty a -> NonEmpty a , inits -- :: Foldable f => f a -> NonEmpty [a] , inits1 -- :: NonEmpty a -> NonEmpty (NonEmpty a) , tails -- :: Foldable f => f a -> NonEmpty [a] , tails1 -- :: NonEmpty a -> NonEmpty (NonEmpty a) , append -- :: NonEmpty a -> NonEmpty a -> NonEmpty a , appendList -- :: NonEmpty a -> [a] -> NonEmpty a , prependList -- :: [a] -> NonEmpty a -> NonEmpty a -- * Building streams , iterate -- :: (a -> a) -> a -> NonEmpty a , repeat -- :: a -> NonEmpty a , cycle -- :: NonEmpty a -> NonEmpty a , unfold -- :: (a -> (b, Maybe a)) -> a -> NonEmpty b , insert -- :: (Foldable f, Ord a) => a -> f a -> NonEmpty a , some1 -- :: Alternative f => f a -> f (NonEmpty a) -- * Extracting sublists , take -- :: Int -> NonEmpty a -> [a] , drop -- :: Int -> NonEmpty a -> [a] , splitAt -- :: Int -> NonEmpty a -> ([a], [a]) , takeWhile -- :: (a -> Bool) -> NonEmpty a -> [a] , dropWhile -- :: (a -> Bool) -> NonEmpty a -> [a] , span -- :: (a -> Bool) -> NonEmpty a -> ([a], [a]) , break -- :: (a -> Bool) -> NonEmpty a -> ([a], [a]) , filter -- :: (a -> Bool) -> NonEmpty a -> [a] , partition -- :: (a -> Bool) -> NonEmpty a -> ([a],[a]) , group -- :: (Foldable f, Eq a) => f a -> [NonEmpty a] , groupBy -- :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a] , groupWith -- :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a] , groupAllWith -- :: Ord b => (a -> b) -> [a] -> [NonEmpty a] , group1 -- :: Eq a => NonEmpty a -> NonEmpty (NonEmpty a) , groupBy1 -- :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty (NonEmpty a) , groupWith1 -- :: Eq b => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) , groupAllWith1 -- :: Ord b => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) , permutations -- :: [a] -> NonEmpty [a] , permutations1 -- :: NonEmpty a -> NonEmpty (NonEmpty a) -- * Sublist predicates , isPrefixOf -- :: Eq a => [a] -> NonEmpty a -> Bool -- * \"Set\" operations , nub -- :: Eq a => NonEmpty a -> NonEmpty a , nubBy -- :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty a -- * Indexing streams , (!!) -- :: NonEmpty a -> Int -> a -- * Zipping and unzipping streams , zip -- :: NonEmpty a -> NonEmpty b -> NonEmpty (a,b) , zipWith -- :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c , unzip -- :: Functor f => f (a,b) -> (f a, f b) -- * Converting to and from a list , fromList -- :: [a] -> NonEmpty a , toList -- :: NonEmpty a -> [a] , nonEmpty -- :: [a] -> Maybe (NonEmpty a) , xor -- :: NonEmpty Bool -> Bool ) where import Prelude() import Control.Applicative import Control.Error import Control.Monad import Data.Bool import Data.Eq import Data.Foldable hiding (length, toList) import qualified Data.Foldable as Foldable import Data.Function import Data.Functor hiding(unzip) import Data.Int import qualified Data.List as List import Data.List_Type import Data.List.NonEmpty_Type import Data.Num import Data.Maybe import Data.Monoid.Internal import Data.Ord import Data.Traversable import Data.Tuple import GHC.Stack(HasCallStack) import Text.Show {- In Data.List.NonEmpty_Type infixr 5 :| data NonEmpty a = a :| [a] deriving (Eq, Ord) -} instance (Eq a) => Eq (NonEmpty a) where (x :| xs) == (y :| ys) = x == y && xs == ys instance (Ord a) => Ord (NonEmpty a) where compare (x :| xs) (y :| ys) = compare x y <> compare xs ys instance Semigroup (NonEmpty a) where (a :| as) <> ~(b :| bs) = a :| (as ++ b : bs) instance Functor NonEmpty where fmap f ~(a :| as) = f a :| fmap f as b <$ ~(_ :| as) = b :| (b <$ as) instance Applicative NonEmpty where pure a = a :| [] (<*>) = ap liftA2 = liftM2 instance Monad NonEmpty where ~(a :| as) >>= f = b :| (bs ++ bs') where b :| bs = f a bs' = as >>= toList . f --instance Foldable NonEmpty -- Defined in Data.Foldable --instance Traversable NonEmpty -- Defined in Data.Traversable --instance Read a => Read (NonEmpty a) -- Defined in GHC.Read --instance Show a => Show (NonEmpty a) -- Defined in GHC.Show instance Show a => Show (NonEmpty a) where showsPrec p = showsPrec p . toList instance Foldable NonEmpty where foldr f z = foldr f z . toList --instance Traversable NonEmpty where -- traverse f = fromList . traverse f . toList ----- End MHS replacement infixr 5 <| -- $setup -- >>> import Prelude (negate) -- | Number of elements in 'NonEmpty' list. length :: NonEmpty a -> Int length (_ :| xs) = 1 + List.length xs -- | Compute n-ary logic exclusive OR operation on 'NonEmpty' list. xor :: NonEmpty Bool -> Bool xor (x :| xs) = List.foldr xor' x xs where xor' True y = not y xor' False y = y -- | 'unfold' produces a new stream by repeatedly applying the unfolding -- function to the seed value to produce an element of type @b@ and a new -- seed value. When the unfolding function returns 'Nothing' instead of -- a new seed value, the stream ends. unfold :: (a -> (b, Maybe a)) -> a -> NonEmpty b unfold f a = case f a of (b, Nothing) -> b :| [] (b, Just c) -> b <| unfold f c {-# DEPRECATED unfold "Use unfoldr" #-} -- Deprecated in 8.2.1, remove in 8.4 -- | 'nonEmpty' efficiently turns a normal list into a 'NonEmpty' stream, -- producing 'Nothing' if the input is empty. nonEmpty :: [a] -> Maybe (NonEmpty a) nonEmpty [] = Nothing nonEmpty (a:as) = Just (a :| as) -- | 'uncons' produces the first element of the stream, and a stream of the -- remaining elements, if any. uncons :: NonEmpty a -> (a, Maybe (NonEmpty a)) uncons ~(a :| as) = (a, nonEmpty as) -- | The 'unfoldr' function is analogous to "Data.List"'s -- 'GHC.Internal.Data.List.unfoldr' operation. unfoldr :: (a -> (b, Maybe a)) -> a -> NonEmpty b unfoldr f a = case f a of (b, mc) -> b :| maybe [] go mc where go c = case f c of (d, me) -> d : maybe [] go me -- | Extract the first element of the stream. head :: NonEmpty a -> a head (a :| _) = a -- | Extract the possibly-empty tail of the stream. tail :: NonEmpty a -> [a] tail (_ :| as) = as -- | Extract the last element of the stream. last :: NonEmpty a -> a last ~(a :| as) = List.last (a : as) -- | Extract everything except the last element of the stream. init :: NonEmpty a -> [a] init ~(a :| as) = List.init (a : as) -- | Construct a 'NonEmpty' list from a single element. -- -- @since 4.15 singleton :: a -> NonEmpty a singleton a = a :| [] -- | Prepend an element to the stream. (<|) :: a -> NonEmpty a -> NonEmpty a a <| ~(b :| bs) = a :| b : bs -- | Synonym for '<|'. cons :: a -> NonEmpty a -> NonEmpty a cons = (<|) -- | Sort a stream. sort :: Ord a => NonEmpty a -> NonEmpty a sort = lift List.sort . toList -- | Sort a 'NonEmpty' on a user-supplied projection of its elements. -- See 'List.sortOn' for more detailed information. -- -- ==== __Examples__ -- -- >>> sortOn fst $ (2, "world") :| [(4, "!"), (1, "Hello")] -- (1,"Hello") :| [(2,"world"),(4,"!")] -- -- >>> sortOn length $ "jim" :| ["creed", "pam", "michael", "dwight", "kevin"] -- "jim" :| ["pam","creed","kevin","dwight","michael"] -- -- ==== __Performance notes__ -- -- This function minimises the projections performed, by materialising -- the projections in an intermediate list. -- -- For trivial projections, you should prefer using 'sortBy' with -- 'comparing', for example: -- -- >>> sortBy (comparing fst) $ (3, 1) :| [(2, 2), (1, 3)] -- (1,3) :| [(2,2),(3,1)] -- -- Or, for the exact same API as 'sortOn', you can use `sortBy . comparing`: -- -- >>> (sortBy . comparing) fst $ (3, 1) :| [(2, 2), (1, 3)] -- (1,3) :| [(2,2),(3,1)] -- -- 'sortWith' is an alias for `sortBy . comparing`. -- -- @since 4.20.0.0 sortOn :: Ord b => (a -> b) -> NonEmpty a -> NonEmpty a sortOn f = lift (List.sortOn f) . toList -- | Converts a normal list to a 'NonEmpty' stream. -- -- Raises an error if given an empty list. fromList :: HasCallStack => [a] -> NonEmpty a fromList (a:as) = a :| as fromList [] = error "NonEmpty.fromList: empty list" -- | Convert a stream to a normal list efficiently. toList :: NonEmpty a -> [a] toList ~(a :| as) = a : as -- | Lift list operations to work on a 'NonEmpty' stream. -- -- /Beware/: If the provided function returns an empty list, -- this will raise an error. -- XXX not yet lift :: Foldable f => ([a] -> [b]) -> f a -> NonEmpty b lift f = fromList . f . Foldable.toList --lift :: ([a] -> [b]) -> [a] -> NonEmpty b --lift f = fromList . f -- | Map a function over a 'NonEmpty' stream. map :: (a -> b) -> NonEmpty a -> NonEmpty b map f ~(a :| as) = f a :| fmap f as -- | The 'inits' function takes a stream @xs@ and returns all the -- finite prefixes of @xs@, starting with the shortest. The result is -- 'NonEmpty' because the result always contains the empty list as the first -- element. -- -- > inits [1,2,3] == [] :| [[1], [1,2], [1,2,3]] -- > inits [1] == [] :| [[1]] -- > inits [] == [] :| [] -- XXX inits :: Foldable f => f a -> NonEmpty [a] inits = fromList . List.inits . Foldable.toList --inits :: [a] -> NonEmpty [a] --inits = fromList . List.inits -- | The 'inits1' function takes a 'NonEmpty' stream @xs@ and returns all the -- 'NonEmpty' finite prefixes of @xs@, starting with the shortest. -- -- > inits1 (1 :| [2,3]) == (1 :| []) :| [1 :| [2], 1 :| [2,3]] -- > inits1 (1 :| []) == (1 :| []) :| [] -- -- @since 4.18 inits1 :: NonEmpty a -> NonEmpty (NonEmpty a) inits1 = -- fromList is an unsafe function, but this usage should be safe, since: -- * `inits xs = [[], ..., init (init xs), init xs, xs]` -- * If `xs` is nonempty, it follows that `inits xs` contains at least one nonempty -- list, since `last (inits xs) = xs`. -- * The only empty element of `inits xs` is the first one (by the definition of `inits`) -- * Therefore, if we take all but the first element of `inits xs` i.e. -- `tail (inits xs)`, we have a nonempty list of nonempty lists fromList . List.map fromList . List.drop 1 . List.inits . Foldable.toList -- fromList . List.map fromList . List.drop 1 . List.inits . toList -- | The 'tails' function takes a stream @xs@ and returns all the -- suffixes of @xs@, starting with the longest. The result is 'NonEmpty' -- because the result always contains the empty list as the last element. -- -- > tails [1,2,3] == [1,2,3] :| [[2,3], [3], []] -- > tails [1] == [1] :| [[]] -- > tails [] == [] :| [] -- XXX tails :: Foldable f => f a -> NonEmpty [a] tails = fromList . List.tails . Foldable.toList --tails :: [a] -> NonEmpty [a] --tails = fromList . List.tails -- | The 'tails1' function takes a 'NonEmpty' stream @xs@ and returns all the -- non-empty suffixes of @xs@, starting with the longest. -- -- > tails1 (1 :| [2,3]) == (1 :| [2,3]) :| [2 :| [3], 3 :| []] -- > tails1 (1 :| []) == (1 :| []) :| [] -- -- @since 4.18 tails1 :: NonEmpty a -> NonEmpty (NonEmpty a) tails1 = -- fromList is an unsafe function, but this usage should be safe, since: -- * `tails xs = [xs, tail xs, tail (tail xs), ..., []]` -- * If `xs` is nonempty, it follows that `tails xs` contains at least one nonempty -- list, since `head (tails xs) = xs`. -- * The only empty element of `tails xs` is the last one (by the definition of `tails`) -- * Therefore, if we take all but the last element of `tails xs` i.e. -- `init (tails xs)`, we have a nonempty list of nonempty lists -- fromList . List.map fromList . List.init . List.tails . Foldable.toList fromList . List.map fromList . List.init . List.tails . toList -- | @'insert' x xs@ inserts @x@ into the last position in @xs@ where it -- is still less than or equal to the next element. In particular, if the -- list is sorted beforehand, the result will also be sorted. insert :: (Foldable f, Ord a) => a -> f a -> NonEmpty a insert a = fromList . List.insert a . Foldable.toList --insert :: (Ord a) => a -> [a] -> NonEmpty a --insert a = fromList . List.insert a -- | @'some1' x@ sequences @x@ one or more times. some1 :: Alternative f => f a -> f (NonEmpty a) some1 x = liftA2 (:|) x (many x) -- | 'scanl' is similar to 'foldl', but returns a stream of successive -- reduced values from the left: -- -- > scanl f z [x1, x2, ...] == z :| [z `f` x1, (z `f` x1) `f` x2, ...] -- -- Note that -- -- > last (scanl f z xs) == foldl f z xs. scanl :: Foldable f => (b -> a -> b) -> b -> f a -> NonEmpty b scanl f z = fromList . List.scanl f z . Foldable.toList --scanl :: (b -> a -> b) -> b -> [a] -> NonEmpty b --scanl f z = fromList . List.scanl f z -- | 'scanr' is the right-to-left dual of 'scanl'. -- Note that -- -- > head (scanr f z xs) == foldr f z xs. scanr :: Foldable f => (a -> b -> b) -> b -> f a -> NonEmpty b scanr f z = fromList . List.scanr f z . Foldable.toList --scanr :: (a -> b -> b) -> b -> [a] -> NonEmpty b --scanr f z = fromList . List.scanr f z -- | 'scanl1' is a variant of 'scanl' that has no starting value argument: -- -- > scanl1 f [x1, x2, ...] == x1 :| [x1 `f` x2, x1 `f` (x2 `f` x3), ...] scanl1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a scanl1 f ~(a :| as) = fromList (List.scanl f a as) -- | 'scanr1' is a variant of 'scanr' that has no starting value argument. scanr1 :: (a -> a -> a) -> NonEmpty a -> NonEmpty a scanr1 f ~(a :| as) = fromList (List.scanr1 f (a:as)) -- | 'intersperse x xs' alternates elements of the list with copies of @x@. -- -- > intersperse 0 (1 :| [2,3]) == 1 :| [0,2,0,3] intersperse :: a -> NonEmpty a -> NonEmpty a intersperse a ~(b :| bs) = b :| case bs of [] -> [] _ -> a : List.intersperse a bs -- | @'iterate' f x@ produces the infinite sequence -- of repeated applications of @f@ to @x@. -- -- > iterate f x = x :| [f x, f (f x), ..] iterate :: (a -> a) -> a -> NonEmpty a iterate f a = a :| List.iterate f (f a) -- | @'cycle' xs@ returns the infinite repetition of @xs@: -- -- > cycle (1 :| [2,3]) = 1 :| [2,3,1,2,3,...] cycle :: NonEmpty a -> NonEmpty a cycle = fromList . List.cycle . toList -- | 'reverse' a finite NonEmpty stream. reverse :: NonEmpty a -> NonEmpty a reverse = lift List.reverse . toList -- | @'repeat' x@ returns a constant stream, where all elements are -- equal to @x@. repeat :: a -> NonEmpty a repeat a = a :| List.repeat a -- | @'take' n xs@ returns the first @n@ elements of @xs@. take :: Int -> NonEmpty a -> [a] take n = List.take n . toList -- | @'drop' n xs@ drops the first @n@ elements off the front of -- the sequence @xs@. drop :: Int -> NonEmpty a -> [a] drop n = List.drop n . toList -- | @'splitAt' n xs@ returns a pair consisting of the prefix of @xs@ -- of length @n@ and the remaining stream immediately following this prefix. -- -- > 'splitAt' n xs == ('take' n xs, 'drop' n xs) -- > xs == ys ++ zs where (ys, zs) = 'splitAt' n xs splitAt :: Int -> NonEmpty a -> ([a],[a]) splitAt n = List.splitAt n . toList -- | @'takeWhile' p xs@ returns the longest prefix of the stream -- @xs@ for which the predicate @p@ holds. takeWhile :: (a -> Bool) -> NonEmpty a -> [a] takeWhile p = List.takeWhile p . toList -- | @'dropWhile' p xs@ returns the suffix remaining after -- @'takeWhile' p xs@. dropWhile :: (a -> Bool) -> NonEmpty a -> [a] dropWhile p = List.dropWhile p . toList -- | @'span' p xs@ returns the longest prefix of @xs@ that satisfies -- @p@, together with the remainder of the stream. -- -- > 'span' p xs == ('takeWhile' p xs, 'dropWhile' p xs) -- > xs == ys ++ zs where (ys, zs) = 'span' p xs span :: (a -> Bool) -> NonEmpty a -> ([a], [a]) span p = List.span p . toList -- | The @'break' p@ function is equivalent to @'span' (not . p)@. break :: (a -> Bool) -> NonEmpty a -> ([a], [a]) break p = span (not . p) -- | @'filter' p xs@ removes any elements from @xs@ that do not satisfy @p@. filter :: (a -> Bool) -> NonEmpty a -> [a] filter p = List.filter p . toList -- | The 'partition' function takes a predicate @p@ and a stream -- @xs@, and returns a pair of lists. The first list corresponds to the -- elements of @xs@ for which @p@ holds; the second corresponds to the -- elements of @xs@ for which @p@ does not hold. -- -- > 'partition' p xs = ('filter' p xs, 'filter' (not . p) xs) partition :: (a -> Bool) -> NonEmpty a -> ([a], [a]) partition p = List.partition p . toList -- | The 'group' function takes a stream and returns a list of -- streams such that flattening the resulting list is equal to the -- argument. Moreover, each stream in the resulting list -- contains only equal elements, and consecutive equal elements -- of the input end up in the same stream of the output list. -- For example, in list notation: -- -- >>> group "Mississippi" -- ["M", "i", "ss", "i", "ss", "i", "pp", "i"] group :: (Foldable f, Eq a) => f a -> [NonEmpty a] --group :: (Eq a) => [a] -> [NonEmpty a] group = groupBy (==) -- | 'groupBy' operates like 'group', but uses the provided equality -- predicate instead of `==`. groupBy :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a] groupBy eq0 = go eq0 . Foldable.toList --groupBy :: (a -> a -> Bool) -> [a] -> [NonEmpty a] --groupBy eq0 = go eq0 where go _ [] = [] go eq (x : xs) = (x :| ys) : groupBy eq zs where (ys, zs) = List.span (eq x) xs -- | 'groupWith' operates like 'group', but uses the provided projection when -- comparing for equality groupWith :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a] --groupWith :: (Eq b) => (a -> b) -> [a] -> [NonEmpty a] groupWith f = groupBy ((==) `on` f) -- | 'groupAllWith' operates like 'groupWith', but sorts the list -- first so that each equivalence class has, at most, one list in the -- output groupAllWith :: (Ord b) => (a -> b) -> [a] -> [NonEmpty a] groupAllWith f = groupWith f . List.sortBy (compare `on` f) -- | 'group1' operates like 'group', but uses the knowledge that its -- input is non-empty to produce guaranteed non-empty output. group1 :: Eq a => NonEmpty a -> NonEmpty (NonEmpty a) group1 = groupBy1 (==) -- | 'groupBy1' is to 'group1' as 'groupBy' is to 'group'. groupBy1 :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty (NonEmpty a) groupBy1 eq (x :| xs) = (x :| ys) :| groupBy eq zs where (ys, zs) = List.span (eq x) xs -- | 'groupWith1' is to 'group1' as 'groupWith' is to 'group' groupWith1 :: (Eq b) => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) groupWith1 f = groupBy1 ((==) `on` f) -- | 'groupAllWith1' is to 'groupWith1' as 'groupAllWith' is to 'groupWith' groupAllWith1 :: (Ord b) => (a -> b) -> NonEmpty a -> NonEmpty (NonEmpty a) groupAllWith1 f = groupWith1 f . sortWith f -- | The 'permutations' function returns the list of all permutations of the argument. -- -- @since 4.20.0.0 permutations :: [a] -> NonEmpty [a] permutations = fromList . List.permutations {- permutations xs0 = xs0 :| perms xs0 [] where perms [] _ = [] perms (t:ts) is = List.foldr interleave (perms ts (t:is)) (permutations is) where interleave xs r = let (_,zs) = interleave' id xs r in zs interleave' _ [] r = (ts, r) interleave' f (y:ys) r = let (us,zs) = interleave' (f . (y:)) ys r in (y:us, f (t:y:us) : zs) -- The implementation of 'permutations' is adopted from 'GHC.Internal.Data.List.permutations', -- see there for discussion and explanations. -} -- | 'permutations1' operates like 'permutations', but uses the knowledge that its input is -- non-empty to produce output where every element is non-empty. -- -- > permutations1 = fmap fromList . permutations . toList -- -- @since 4.20.0.0 permutations1 :: NonEmpty a -> NonEmpty (NonEmpty a) permutations1 xs = fromList <$> permutations (toList xs) -- | The 'isPrefixOf' function returns 'True' if the first argument is -- a prefix of the second. isPrefixOf :: Eq a => [a] -> NonEmpty a -> Bool isPrefixOf [] _ = True isPrefixOf (y:ys) (x :| xs) = (y == x) && List.isPrefixOf ys xs -- | @xs !! n@ returns the element of the stream @xs@ at index -- @n@. Note that the head of the stream has index 0. -- -- /Beware/: a negative or out-of-bounds index will cause an error. (!!) :: HasCallStack => NonEmpty a -> Int -> a (!!) ~(x :| xs) n | n == 0 = x | n > 0 = xs List.!! (n - 1) | otherwise = error "NonEmpty.!! negative index" infixl 9 !! -- | The 'zip' function takes two streams and returns a stream of -- corresponding pairs. zip :: NonEmpty a -> NonEmpty b -> NonEmpty (a,b) zip ~(x :| xs) ~(y :| ys) = (x, y) :| List.zip xs ys -- | The 'zipWith' function generalizes 'zip'. Rather than tupling -- the elements, the elements are combined using the function -- passed as the first argument. zipWith :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c zipWith f ~(x :| xs) ~(y :| ys) = f x y :| List.zipWith f xs ys -- | The 'unzip' function is the inverse of the 'zip' function. unzip :: Functor f => f (a,b) -> (f a, f b) unzip xs = (fst <$> xs, snd <$> xs) {-# WARNING in "x-data-list-nonempty-unzip" unzip "This function will be made monomorphic in base-4.22, consider switching to Data.Functor.unzip" #-} -- | The 'nub' function removes duplicate elements from a list. In -- particular, it keeps only the first occurrence of each element. -- (The name 'nub' means \'essence\'.) -- It is a special case of 'nubBy', which allows the programmer to -- supply their own inequality test. nub :: Eq a => NonEmpty a -> NonEmpty a nub = nubBy (==) -- | The 'nubBy' function behaves just like 'nub', except it uses a -- user-supplied equality predicate instead of the overloaded '==' -- function. nubBy :: (a -> a -> Bool) -> NonEmpty a -> NonEmpty a nubBy eq (a :| as) = a :| List.nubBy eq (List.filter (\b -> not (eq a b)) as) -- | 'transpose' for 'NonEmpty', behaves the same as 'GHC.Internal.Data.List.transpose' -- The rows/columns need not be the same length, in which case -- > transpose . transpose /= id transpose :: NonEmpty (NonEmpty a) -> NonEmpty (NonEmpty a) transpose = fmap fromList . fromList . List.transpose . toList . fmap toList -- | 'sortBy' for 'NonEmpty', behaves the same as 'GHC.Internal.Data.List.sortBy' sortBy :: (a -> a -> Ordering) -> NonEmpty a -> NonEmpty a sortBy f = lift (List.sortBy f) . toList -- | 'sortWith' for 'NonEmpty', behaves the same as: -- -- > sortBy . comparing sortWith :: Ord o => (a -> o) -> NonEmpty a -> NonEmpty a sortWith = sortBy . comparing -- | A monomorphic version of '<>' for 'NonEmpty'. -- -- >>> append (1 :| []) (2 :| [3]) -- 1 :| [2,3] -- -- @since 4.16 append :: NonEmpty a -> NonEmpty a -> NonEmpty a append = (<>) -- | Attach a list at the end of a 'NonEmpty'. -- -- >>> appendList (1 :| [2,3]) [] -- 1 :| [2,3] -- -- >>> appendList (1 :| [2,3]) [4,5] -- 1 :| [2,3,4,5] -- -- @since 4.16 appendList :: NonEmpty a -> [a] -> NonEmpty a appendList (x :| xs) ys = x :| xs <> ys -- | Attach a list at the beginning of a 'NonEmpty'. -- -- >>> prependList [] (1 :| [2,3]) -- 1 :| [2,3] -- -- >>> prependList [negate 1, 0] (1 :| [2, 3]) -- -1 :| [0,1,2,3] -- -- @since 4.16 prependList :: [a] -> NonEmpty a -> NonEmpty a prependList ls ne = case ls of [] -> ne (x : xs) -> x :| xs <> toList ne