module Numeric.FormatFloat( formatRealFloat, formatRealFloatAlt, showEFloat, showFFloat, showGFloat, showFFloatAlt, showGFloatAlt, showHFloat, ) where import Data.Char import Numeric.Show --showFloat :: (RealFloat a) => a -> ShowS --showFloat x = showString (formatRealFloat FFGeneric Nothing x) -- These are the format types. This type is not exported. data FFFormat = FFExponent | FFFixed | FFGeneric formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String formatRealFloat fmt decs x = formatRealFloatAlt fmt decs False x formatRealFloatAlt :: (RealFloat a) => FFFormat -> Maybe Int -> Bool -> a -> String formatRealFloatAlt fmt decs alt x | isNaN x = "NaN" | isInfinite x = if x < 0 then "-Infinity" else "Infinity" | x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x)) | otherwise = doFmt fmt (floatToDigits (toInteger base) x) where base = 10 doFmt format (is, e) = let ds = map intToDigit is in case format of FFGeneric -> doFmt (if e < 0 || e > 7 then FFExponent else FFFixed) (is,e) FFExponent -> case decs of Nothing -> let show_e' = show (e-1) in case ds of "0" -> "0.0e0" [d] -> d : ".0e" ++ show_e' (d:ds') -> d : '.' : ds' ++ "e" ++ show_e' [] -> error "formatRealFloat/doFmt/FFExponent: []" Just d | d <= 0 -> -- handle this case specifically since we need to omit the -- decimal point as well (#15115). -- Note that this handles negative precisions as well for consistency -- (see #15509). case is of [0] -> "0e0" _ -> let (ei,is') = roundTo base 1 is n:_ = map intToDigit (if ei > 0 then init is' else is') in n : 'e' : show (e-1+ei) Just dec -> let dec' = max dec 1 in case is of [0] -> '0' :'.' : take dec' (repeat '0') ++ "e0" _ -> let (ei,is') = roundTo base (dec'+1) is (d:ds') = map intToDigit (if ei > 0 then init is' else is') in d:'.':ds' ++ 'e':show (e-1+ei) FFFixed -> let mk0 ls = case ls of { "" -> "0" ; _ -> ls} in case decs of Nothing | e <= 0 -> "0." ++ replicate (-e) '0' ++ ds | otherwise -> let f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs f n s "" = f (n-1) ('0':s) "" f n s (r:rs) = f (n-1) (r:s) rs in f e "" ds Just dec -> let dec' = max dec 0 in if e >= 0 then let (ei,is') = roundTo base (dec' + e) is (ls,rs) = splitAt (e+ei) (map intToDigit is') in mk0 ls ++ (if null rs && not alt then "" else '.':rs) else let (ei,is') = roundTo base dec' (replicate (-e) 0 ++ is) d:ds' = map intToDigit (if ei > 0 then is' else 0:is') in d : (if null ds' && not alt then "" else '.':ds') roundTo :: Int -> Int -> [Int] -> (Int,[Int]) roundTo base d is = case f d True is of x@(0,_) -> x (1,xs) -> (1, 1:xs) _ -> error "roundTo: bad Value" where b2 = base `quot` 2 f n _ [] = (0, replicate n 0) f 0 e (x:xs) | x == b2 && e && all (== 0) xs = (0, []) -- Round to even when at exactly half the base | otherwise = (if x >= b2 then 1 else 0, []) f n _ (i:xs) | i' == base = (1,0:ds) | otherwise = (0,i':ds) where (c,ds) = f (n-1) (even i) xs i' = c + i -- Based on "Printing Floating-Point Numbers Quickly and Accurately" -- by R.G. Burger and R.K. Dybvig in PLDI 96. -- This version uses a much slower logarithm estimator. It should be improved. -- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number, -- and returns a list of digits and an exponent. -- In particular, if @x>=0@, and -- -- > floatToDigits base x = ([d1,d2,...,dn], e) -- -- then -- -- (1) @n >= 1@ -- -- (2) @x = 0.d1d2...dn * (base**e)@ -- -- (3) @0 <= di <= base-1@ floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int) floatToDigits _ 0 = ([0], 0) floatToDigits base x = let (f0, e0) = decodeFloat x (minExp0, _) = floatRange x p = floatDigits x b = floatRadix x minExp = minExp0 - p -- the real minimum exponent -- Haskell requires that f be adjusted so denormalized numbers -- will have an impossibly low exponent. Adjust for this. (f, e) = let n = minExp - e0 in if n > 0 then (f0 `quot` (expt b n), e0+n) else (f0, e0) (r, s, mUp, mDn) = if e >= 0 then let be = expt b e in if f == expt b (p-1) then (f*be*b*2, 2*b, be*b, be) -- according to Burger and Dybvig else (f*be*2, 2, be, be) else if e > minExp && f == expt b (p-1) then (f*b*2, expt b (-e+1)*2, b, 1) else (f*2, expt b (-e)*2, 1, 1) k :: Int k = let k0 :: Int k0 = if b == 2 && base == 10 then -- logBase 10 2 is very slightly larger than 8651/28738 -- (about 5.3558e-10), so if log x >= 0, the approximation -- k1 is too small, hence we add one and need one fixup step less. -- If log x < 0, the approximation errs rather on the high side. -- That is usually more than compensated for by ignoring the -- fractional part of logBase 2 x, but when x is a power of 1/2 -- or slightly larger and the exponent is a multiple of the -- denominator of the rational approximation to logBase 10 2, -- k1 is larger than logBase 10 x. If k1 > 1 + logBase 10 x, -- we get a leading zero-digit we don't want. -- With the approximation 3/10, this happened for -- 0.5^1030, 0.5^1040, ..., 0.5^1070 and values close above. -- The approximation 8651/28738 guarantees k1 < 1 + logBase 10 x -- for IEEE-ish floating point types with exponent fields -- <= 17 bits and mantissae of several thousand bits, earlier -- convergents to logBase 10 2 would fail for long double. -- Using quot instead of div is a little faster and requires -- fewer fixup steps for negative lx. let lx = p - 1 + e0 k1 = (lx * 8651) `quot` 28738 in if lx >= 0 then k1 + 1 else k1 else -- f :: Integer, log :: Float -> Float, -- ceiling :: Float -> Int ceiling ((log (fromInteger (f+1) :: Float) + fromIntegral e * log (fromInteger b)) / log (fromInteger base)) --WAS: fromInt e * log (fromInteger b)) fixup n = if n >= 0 then if r + mUp <= expt base n * s then n else fixup (n+1) else if expt base (-n) * (r + mUp) <= s then n else fixup (n+1) in fixup k0 gen ds rn sN mUpN mDnN = let (dn, rn') = (rn * base) `quotRem` sN mUpN' = mUpN * base mDnN' = mDnN * base in case (rn' < mDnN', rn' + mUpN' > sN) of (True, False) -> dn : ds (False, True) -> dn+1 : ds (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN' rds = if k >= 0 then gen [] r (s * expt base k) mUp mDn else let bk = expt base (-k) in gen [] (r * bk) s (mUp * bk) (mDn * bk) in (map fromIntegral (reverse rds), k) ----------- showEFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showFFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showGFloat :: (RealFloat a) => Maybe Int -> a -> ShowS showFFloatAlt :: (RealFloat a) => Maybe Int -> a -> ShowS showGFloatAlt :: (RealFloat a) => Maybe Int -> a -> ShowS showEFloat d x = showString (formatRealFloat FFExponent d x) showFFloat d x = showString (formatRealFloat FFFixed d x) showGFloat d x = showString (formatRealFloat FFGeneric d x) showFFloatAlt d x = showString (formatRealFloatAlt FFFixed d True x) showGFloatAlt d x = showString (formatRealFloatAlt FFGeneric d True x) showHFloat :: RealFloat a => a -> ShowS showHFloat = showString . fmt where fmt x | isNaN x = "NaN" | isInfinite x = (if x < 0 then "-" else "") ++ "Infinity" | x < 0 || isNegativeZero x = '-' : cvt (-x) | otherwise = cvt x cvt x | x == 0 = "0x0p+0" | otherwise = case floatToDigits 2 x of r@([], _) -> error $ "Impossible happened: showHFloat: " ++ show r (d:ds, e) -> "0x" ++ show d ++ frac ds ++ "p" ++ show (e-1) -- Given binary digits, convert them to hex in blocks of 4 -- Special case: If all 0's, just drop it. frac digits | allZ digits = "" | otherwise = "." ++ hex digits where hex ds = case ds of [] -> "" [a] -> hexDigit a 0 0 0 "" [a,b] -> hexDigit a b 0 0 "" [a,b,c] -> hexDigit a b c 0 "" a : b : c : d : r -> hexDigit a b c d (hex r) hexDigit a b c d = showHex (8*a + 4*b + 2*c + d) allZ xs = case xs of x : more -> x == 0 && allZ more [] -> True {- -- Exponentiation with a cache for the most common numbers. minExpt, maxExpt :: Int minExpt = 0 maxExpt = 1100 expt :: Integer -> Int -> Integer expt base n = if base == 2 && n >= minExpt && n <= maxExpt then expts!n else if base == 10 && n <= maxExpt10 then expts10!n else base^n expts :: Array Int Integer expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]] maxExpt10 :: Int maxExpt10 = 324 expts10 :: Array Int Integer expts10 = array (minExpt,maxExpt10) [(n,10^n) | n <- [minExpt .. maxExpt10]] -} expt :: Integer -> Int -> Integer expt base n = base^n