MiniAgda by Andreas Abel and Karl Mehltretter --- opening "codyPatternConditionExplicit2.ma" --- --- scope checking --- --- type checking --- type Nat : Set term Nat.zero : < Nat.zero : Nat > term Nat.succ : ^(y0 : Nat) -> < Nat.succ y0 : Nat > type O : + Size -> Set term O.Z : .[s!ze : Size] -> .[i < s!ze] -> O s!ze term O.Z : .[i : Size] -> < O.Z i : O $i > term O.S : .[s!ze : Size] -> .[i < s!ze] -> ^ O i -> O s!ze term O.S : .[i : Size] -> ^(y1 : O i) -> < O.S i y1 : O $i > term O.L : .[s!ze : Size] -> .[i < s!ze] -> ^ (Nat -> O i) -> O s!ze term O.L : .[i : Size] -> ^(y1 : Nat -> O i) -> < O.L i y1 : O $i > term O.M : .[s!ze : Size] -> .[i < s!ze] -> ^ O i -> ^ O i -> O s!ze term O.M : .[i : Size] -> ^(y1 : O i) -> ^(y2 : O i) -> < O.M i y1 y2 : O $i > term f01 : .[i : Size] -> Nat -> O $$$i { f01 [i] Nat.zero = O.Z [i] ; f01 [i] (Nat.succ Nat.zero) = O.S [$i] (O.Z [i]) ; f01 [i] (Nat.succ (Nat.succ n)) = O.S [$$i] (O.S [$i] (O.Z [i])) } term v5 : .[i : Size] -> O $$$$$i term v5 = [\ i ->] O.M [$$$$i] (O.L [$$$i] (f01 [i])) (O.S [$$$i] (O.S [$$i] (O.S [$i] (O.Z [i])))) term emb : Nat -> O # { emb Nat.zero = O.Z [#] ; emb (Nat.succ n) = O.S [#] (emb n) } term pre : .[i : Size] -> (Nat -> O $$i) -> Nat -> O $i term pre = [\ i ->] \ f -> \ n -> case f (Nat.succ n) : O $$i { O.Z [.$i] -> O.Z [i] ; O.S [.$i] x -> x ; O.L [.$i] g -> g n ; O.M [.$i] a b -> a } term deep : .[i : Size] -> O i -> Nat -> Nat error during typechecking: deep /// clause 1 /// right hand side /// checkExpr 9 |- deep (max $$$i $$j2) (M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n))) (succ (succ (succ n))) : Nat /// inferExpr' deep (max $$$i $$j2) (M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n))) (succ (succ (succ n))) /// inferExpr' deep (max $$$i $$j2) (M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n))) /// checkApp ((O (max ($ ($ ($ v6))) ($ ($ v2))))::Tm -> {Nat -> Nat {i = (max ($ ($ ($ v6))) ($ ($ v2)))}}) eliminated by M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n)) /// checkExpr 9 |- M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n)) : O (max $$$i $$j2) /// checkForced fromList [(i4,0),(i3,1),(j2,2),(f,3),(i2,4),(i1,5),(i,6),(x,7),(n,8)] |- M (max $$i $j2) (L $i (pre $$i f)) (S j2 (f n)) : O (max $$$i $$j2) /// checkApp (^(y1 : (O (max ($ ($ v6)) ($ v2)))::()) -> ^(y2 : O i) -> < O.M i y1 y2 : O $i >{i = (max ($ ($ v6)) ($ v2))}) eliminated by L $i (pre $$i f) /// checkExpr 9 |- L $i (pre $$i f) : O (max $$i $j2) /// checkForced fromList [(i4,0),(i3,1),(j2,2),(f,3),(i2,4),(i1,5),(i,6),(x,7),(n,8)] |- L $i (pre $$i f) : O (max $$i $j2) /// checkApp (^(y1 : (Nat::Tm -> {O i {i = ($ v6)}})::()) -> < O.L i y1 : O $i >{i = ($ v6)}) eliminated by pre $$i f /// inferExpr' pre $$i f /// checkApp ((Nat::Tm -> {O $$i {i = ($ ($ v6))}})::Tm -> {Nat -> O $i {i = ($ ($ v6))}}) eliminated by f /// leqVal' (subtyping) (xSing# : Nat) -> < f xSing# : O j2 > <=+ Nat -> O $$$$i /// new xSing# : Nat /// comparing codomain < f xSing# : O j2 > with O $$$$i /// leqVal' (subtyping) < f xSing# : O j2 > <=+ O $$$$i /// leqVal' (subtyping) O j2 <=+ O $$$$i /// leqVal' j2 <=+ $$$$i : Size /// leSize j2 <=+ $$$$i /// leSize' j2 <= $$$$i /// bound not entailed