MiniAgda by Andreas Abel and Karl Mehltretter --- opening "loopBadTypesHidden.ma" --- --- scope checking --- --- type checking --- type SNat : + Size -> Set term SNat.zero : .[s!ze : Size] -> .[i < s!ze] -> SNat s!ze term SNat.zero : .[i : Size] -> < SNat.zero i : SNat $i > term SNat.succ : .[s!ze : Size] -> .[i < s!ze] -> ^ SNat i -> SNat s!ze term SNat.succ : .[i : Size] -> ^(y1 : SNat i) -> < SNat.succ i y1 : SNat $i > type Maybe : ++(A : Set) -> Set term Maybe.nothing : .[A : Set] -> < Maybe.nothing : Maybe A > term Maybe.just : .[A : Set] -> ^(y0 : A) -> < Maybe.just y0 : Maybe A > type Nat : Set type Nat = SNat # term shift_case : .[i : Size] -> Maybe (SNat $i) -> Maybe (SNat i) { shift_case [i] Maybe.nothing = Maybe.nothing ; shift_case [.i] (Maybe.just (SNat.zero [i])) = Maybe.nothing ; shift_case [.i] (Maybe.just (SNat.succ [i] x)) = Maybe.just x } term shift : .[i : Size] -> (Nat -> Maybe (SNat $i)) -> Nat -> Maybe (SNat i) term shift = [\ i ->] \ f -> \ n -> shift_case [i] (f (SNat.succ [#] n)) term inc : Nat -> Maybe Nat term inc = \ n -> Maybe.just (SNat.succ [#] n) type Unit : Set term Unit.unit : < Unit.unit : Unit > type loopType : Unit -> Set { loopType un!t = .[i : Size] -> SNat i -> (Nat -> Maybe (SNat i)) -> Unit } type loopCaseType : Unit -> Set { loopCaseType un!t = .[i : Size] -> (Nat -> Maybe (SNat i)) -> Maybe (SNat i) -> Unit } term loop : (u : Unit) -> loopType u term loop_case : (u : Unit) -> loopCaseType u error during typechecking: checking type of loop for admissibility /// new un!t : _ /// new i : _ /// new f : _ /// new i <= # /// admType: checking ((SNat v3)::Tm -> {(Nat -> Maybe (SNat i)) -> Unit {i = v3, un!t = v0}}) admissible in v3 /// new : (SNat v3) /// admType: checking (((SNat #)::Tm -> {Maybe (SNat i) {i = v3, un!t = v0}})::Tm -> {Unit {i = v3, un!t = v0}}) admissible in v3 /// type SNat # -> Maybe (SNat i) not lower semi continuous in i