MiniAgda by Andreas Abel and Karl Mehltretter --- opening "inconsistentAssumption2.ma" --- --- scope checking --- --- type checking --- type SNat : + Size -> Set term SNat.zero : .[s!ze : Size] -> .[i < s!ze] -> SNat s!ze term SNat.zero : .[i : Size] -> < SNat.zero i : SNat $i > term SNat.succ : .[s!ze : Size] -> .[i < s!ze] -> ^ SNat i -> SNat s!ze term SNat.succ : .[i : Size] -> ^(y1 : SNat i) -> < SNat.succ i y1 : SNat $i > type Eq : ^(A : Set) -> ^(a : A) -> ^ A -> Set term Eq.refl : .[A : Set] -> .[a : A] -> < Eq.refl : Eq A a a > term subst : .[A : Set] -> .[P : A -> Set] -> (i : A) -> (j : A) -> Eq A i j -> P i -> P j { subst [A] [P] i .i Eq.refl p = p } error during typechecking: type of h /// not a type: (ass : (i : Size) -> Eq Size $i i) -> (i : Size) -> SNat i -> SNat # /// inferExpr' (ass : (i : Size) -> Eq Size $i i) -> (i : Size) -> SNat i -> SNat # /// inferExpr' (i : Size) -> Eq Size $i i /// new i <= # /// inferExpr' Eq Size $i i /// inferExpr' Eq Size $i /// inferExpr' Eq Size /// checkApp (^(A : Set) -> ^(a : A) -> ^ A -> Set) eliminated by Size /// leqVal' (subtyping) < Size : TSize > <=+ Set /// leqVal' (subtyping) TSize <=+ Set /// universe test TSize <= Set failed