{-# LANGUAGE RecordWildCards #-} -- | Integration of segment trees with the heavy-light decomposition technique. Computes monoid -- products on a path in \(O(\log^2 n)\) time or on a subtree in \(O(\log n)\) time. -- -- - If vertices have weights, create a `TreeMonoid` with `fromVerts`. -- - If edges have weights, create a tree monoid with `fromEdges`. -- -- ==== __(Internals) Weights on edges__ -- -- When vertices are unweighted and only edges have weights, treat edges as new vertices or assign -- edge weights to the deeper vertex. -- -- Idea 1. Convert edges into new vertices. This is inefficient. -- -- @ -- o--o--o --> o-x-o-x-o -- @ -- -- Idea 2. Assign edge weight to the deeper vertex. The is the internal implementation of -- `fromEdges` and LCAs are ignored on `prod`: -- -- @ -- o -- | <--- edge 1 -- o <- write weight 1 here -- | <--- edge 2 -- o <- write weight 2 here -- @ -- -- ==== __Example (1): Weights are on vertices__ -- >>> import AtCoder.Extra.Graph qualified as Gr -- >>> import AtCoder.Extra.Tree.Hld qualified as Hld -- >>> import AtCoder.Extra.Tree.TreeMonoid qualified as TM -- >>> import Data.Semigroup (Sum (..)) -- >>> import Data.Vector.Unboxed qualified as VU -- >>> -- 0--1--2--3 -- >>> -- + -- >>> -- +--4--5 -- >>> let n = 6 -- >>> -- note that the edges must be bi-directed: -- >>> let tree = Gr.build' n . Gr.swapDupe' $ VU.fromList [(0, 1), (1, 2), (2, 3), (1, 4), (4, 5)] -- >>> let weights = VU.generate n Sum -- vertex `i` is given weight of `i` -- >>> let hld = Hld.new tree -- >>> tm <- TM.fromVerts hld {- `Sum` is commutative -} Commute weights -- >>> TM.prod tm 1 3 -- Sum {getSum = 6} -- -- >>> TM.prodSubtree tm 1 -- Sum {getSum = 15} -- -- >>> TM.write tm 1 $ Sum 10 -- >>> TM.prod tm 1 3 -- Sum {getSum = 15} -- -- ==== __Example (2): Weights are on edges__ -- >>> import AtCoder.Extra.Graph qualified as Gr -- >>> import AtCoder.Extra.Tree.Hld qualified as Hld -- >>> import AtCoder.Extra.Tree.TreeMonoid qualified as TM -- >>> import Data.Semigroup (Sum (..)) -- >>> import Data.Vector.Unboxed qualified as VU -- >>> -- 0--1--2--3 -- >>> -- + -- >>> -- +--4--5 -- >>> let n = 6 -- >>> let edges = VU.fromList [(0, 1, Sum (1 :: Int)), (1, 2, Sum 2), (2, 3, Sum 3), (1, 4, Sum 4), (4, 5, Sum 5)] -- >>> -- note that the edges must be bi-directed: -- >>> let tree = Gr.build n $ Gr.swapDupe edges -- >>> let hld = Hld.new tree -- >>> let hld = Hld.new tree -- >>> -- note that the edge doesn't have to be bi-directed: -- >>> tm <- TM.fromEdges hld {- `Sum` is commutative -} Commute edges -- >>> TM.prod tm 1 3 -- Sum {getSum = 5} -- -- >>> TM.prodSubtree tm 1 -- Sum {getSum = 14} -- -- >>> TM.write tm 2 $ Sum 10 -- >>> TM.prod tm 1 3 -- Sum {getSum = 13} -- -- @since 1.1.0.0 module AtCoder.Extra.Tree.TreeMonoid ( -- * TreeMonoid TreeMonoid, Vertex, VertexHld, Commutativity (..), -- * Constructors fromVerts, fromEdges, -- * Segment tree methods -- ** Reading prod, prodSubtree, read, -- ** Modifications write, exchange, modify, modifyM, ) where import AtCoder.Extra.Tree.Hld qualified as Hld import AtCoder.Internal.Assert qualified as ACIA import AtCoder.SegTree qualified as ST import Control.Monad import Control.Monad.Primitive (PrimMonad, PrimState) import Data.Monoid (Dual (..)) import Data.Vector.Generic qualified as VG import Data.Vector.Generic.Mutable qualified as VGM import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM import GHC.Stack (HasCallStack) import Prelude hiding (read) -- | Original graph vertex. -- -- @since 1.1.0.0 type Vertex = Int -- | Vertex reindexed by `indexHld`. -- -- @since 1.1.0.0 type VertexHld = Vertex -- | A wrapper for `Hld` getting product on paths on a tree using `Hld` and segment tree(s). -- -- @since 1.1.0.0 data TreeMonoid a s = TreeMonoid { -- | Borrowed Hld. hldTM :: !Hld.Hld, -- | Indicates if it's targetting commutative monoids. commuteTM :: !Commutativity, -- | Indicates if it's targetting edge weights (If not, it's targetting vertex weights). weightPolicyTM :: !Hld.WeightPolicy, -- | Segment tree for getting products upwards. segFTM :: !(ST.SegTree s a), -- | Segment tree for getting products downwards. Only created when the monoid is -- `NonCommute`. segBTM :: !(ST.SegTree s (Dual a)) } -- | Represents whether a monoid is commutative or noncommutative. -- -- @since 1.1.0.0 data Commutativity = -- | Commutative: \(a \cdot b = b \cdot a\). -- -- @since 1.1.0.0 Commute | -- | Noncommutative: \(a \cdot b \neq b \cdot a\). -- -- @since 1.1.0.0 NonCommute deriving ( -- | @since 1.1.0.0 Eq, -- | @since 1.1.0.0 Show ) -- | \(O(n)\) {-# INLINE buildImpl #-} buildImpl :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => Hld.Hld -> Commutativity -> Hld.WeightPolicy -> VU.Vector a -> m (TreeMonoid a (PrimState m)) buildImpl hldTM commuteTM weightPolicyTM weights = do segFTM <- ST.build weights segBTM <- case commuteTM of Commute -> ST.build VU.empty NonCommute -> ST.build $ VU.map Dual weights pure TreeMonoid {..} -- | \(O(n)\) Creates a `TreeMonoid` with weights on vertices. -- -- @since 1.1.0.0 {-# INLINE fromVerts #-} fromVerts :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => -- | `Hld.Hld`. Hld.Hld -> -- | Whether the monoid is commutative or not. Commutativity -> -- | The vertex weights. VU.Vector a -> -- | A `TreeMonoid` with weights on vertices. m (TreeMonoid a (PrimState m)) fromVerts hld@Hld.Hld {indexHld} commuteTM xs_ = do let !_ = ACIA.runtimeAssert (VU.length indexHld == VU.length xs_) $ "AtCoder.Extra.Tree.TreeMonoid.fromVerts: vertex number mismatch (`" ++ show (VU.length indexHld) ++ "` and `" ++ show (VU.length xs_) ++ "`)" let !xs = VU.create $ do vec <- VUM.unsafeNew $ VU.length xs_ VU.iforM_ xs_ $ \i x -> do VGM.write vec (indexHld VG.! i) x pure vec buildImpl hld commuteTM Hld.WeightsAreOnVertices xs -- | \(O(n)\) Creates a `TreeMonoid` with weignts on edges. The edges are not required to be -- duplicated: only one of \((u, v, w)\) or \((v, u, w)\) is needed. -- -- @since 1.1.0.0 {-# INLINE fromEdges #-} fromEdges :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => -- | `Hld.Hld`. Hld.Hld -> -- | Whether the monoid is commutative or not. Commutativity -> -- | Input edges. VU.Vector (Vertex, Vertex, a) -> -- | A `TreeMonoid` with weights on edges. m (TreeMonoid a (PrimState m)) fromEdges hld@Hld.Hld {indexHld} commuteTM edges = do let !xs = VU.create $ do vec <- VUM.unsafeNew $ VU.length indexHld VU.forM_ edges $ \(!u, !v, !w) -> do let u' = indexHld VG.! u let v' = indexHld VG.! v VGM.write vec (max u' v') w pure vec buildImpl hld commuteTM Hld.WeightsAreOnEdges xs -- | \(O(\log^2 n)\) Returns the product of the path between two vertices \(u\), \(v\) (invlusive). -- -- @since 1.1.0.0 {-# INLINE prod #-} prod :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> Vertex -> Vertex -> m a prod TreeMonoid {..} u v = do case commuteTM of Commute -> Hld.prod weightPolicyTM hldTM (ST.prod segFTM) (ST.prod segFTM) u v NonCommute -> Hld.prod weightPolicyTM hldTM (ST.prod segFTM) (\l r -> getDual <$> ST.prod segBTM l r) u v -- | \(O(\log n)\) Returns the product of the subtree rooted at the given `Vertex`. -- -- @since 1.1.0.0 {-# INLINE prodSubtree #-} prodSubtree :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> Vertex -> m a prodSubtree TreeMonoid {..} subtreeRoot = do let (!l, !r) = Hld.subtreeSegmentInclusive hldTM subtreeRoot case weightPolicyTM of Hld.WeightsAreOnVertices -> ST.prod segFTM l (r + 1) Hld.WeightsAreOnEdges -> do -- ignore the root of the subtree, which has the minimum index among the subtree vertices if l == r then pure mempty else ST.prod segFTM (l + 1) (r + 1) -- | \(O(1)\) Reads a monoid value of a `Vertex`. -- -- @since 1.1.0.0 {-# INLINE read #-} read :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> Vertex -> m a read TreeMonoid {..} i_ = do let !i = Hld.indexHld hldTM VG.! i_ ST.read segFTM i -- | \(O(\log n)\) Writes to the monoid value of a vertex. -- -- @since 1.1.0.0 {-# INLINE write #-} write :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> Vertex -> a -> m () write TreeMonoid {..} i_ x = do let !i = Hld.indexHld hldTM VG.! i_ ST.write segFTM i x when (commuteTM == NonCommute) $ do ST.write segBTM i $ Dual x -- | \(O(\log n)\) Writes to the monoid value of a vertex and returns the old value. -- -- @since 1.1.0.0 {-# INLINE exchange #-} exchange :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> Vertex -> a -> m a exchange TreeMonoid {..} i_ x = do let !i = Hld.indexHld hldTM VG.! i_ !res <- ST.exchange segFTM i x when (commuteTM == NonCommute) $ do ST.write segBTM i $ Dual x pure res -- | \(O(\log n)\) Modifies the monoid value of a vertex with a pure function. -- -- @since 1.1.0.0 {-# INLINE modify #-} modify :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> (a -> a) -> Int -> m () modify TreeMonoid {..} f i_ = do let !i = Hld.indexHld hldTM VG.! i_ ST.modify segFTM f i when (commuteTM == NonCommute) $ do ST.modify segBTM (Dual . f . getDual) i -- | \(O(\log n)\) Modifies the monoid value of a vertex with a monadic function. -- -- @since 1.1.0.0 {-# INLINE modifyM #-} modifyM :: (HasCallStack, PrimMonad m, Monoid a, VU.Unbox a) => TreeMonoid a (PrimState m) -> (a -> m a) -> Int -> m () modifyM TreeMonoid {..} f i_ = do let !i = Hld.indexHld hldTM VG.! i_ ST.modifyM segFTM f i when (commuteTM == NonCommute) $ do ST.modifyM segBTM ((Dual <$>) . f . getDual) i