module Data.Array.Accelerate.Data.Monoid (
Monoid(..), (<>),
Sum(..),
Product(..),
) where
import Data.Array.Accelerate as A
import Data.Array.Accelerate.Type as A
import Data.Array.Accelerate.Smart as A ( Exp(..), PreExp(..) )
import Data.Array.Accelerate.Product as A
import Data.Array.Accelerate.Array.Sugar as A
import Data.Function
import Data.Monoid hiding ( mconcat )
import qualified Prelude as P
type instance EltRepr (Sum a) = ((), EltRepr a)
instance Elt a => Elt (Sum a) where
eltType _ = PairTuple UnitTuple (eltType (undefined::a))
toElt ((),x) = Sum (toElt x)
fromElt (Sum x) = ((), fromElt x)
instance Elt a => IsProduct Elt (Sum a) where
type ProdRepr (Sum a) = ((), a)
toProd _ ((),a) = Sum a
fromProd _ (Sum a) = ((),a)
prod _ _ = ProdRsnoc ProdRunit
instance (Lift Exp a, Elt (Plain a)) => Lift Exp (Sum a) where
type Plain (Sum a) = Sum (Plain a)
lift (Sum a) = Exp $ Tuple $ NilTup `SnocTup` lift a
instance Elt a => Unlift Exp (Sum (Exp a)) where
unlift t = Sum . Exp $ ZeroTupIdx `Prj` t
instance A.Num a => Monoid (Exp (Sum a)) where
mempty = 0
mappend = lift2 (mappend :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
instance A.Num a => P.Num (Exp (Sum a)) where
(+) = lift2 ((+) :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
() = lift2 (() :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
(*) = lift2 ((*) :: Sum (Exp a) -> Sum (Exp a) -> Sum (Exp a))
negate = lift1 (negate :: Sum (Exp a) -> Sum (Exp a))
signum = lift1 (signum :: Sum (Exp a) -> Sum (Exp a))
abs = lift1 (signum :: Sum (Exp a) -> Sum (Exp a))
fromInteger x = lift (P.fromInteger x :: Sum (Exp a))
instance A.Eq a => A.Eq (Sum a) where
(==) = lift2 ((==) `on` getSum)
(/=) = lift2 ((/=) `on` getSum)
instance A.Ord a => A.Ord (Sum a) where
(<) = lift2 ((<) `on` getSum)
(>) = lift2 ((>) `on` getSum)
(<=) = lift2 ((<=) `on` getSum)
(>=) = lift2 ((>=) `on` getSum)
min x y = lift . Sum $ lift2 (min `on` getSum) x y
max x y = lift . Sum $ lift2 (max `on` getSum) x y
type instance EltRepr (Product a) = ((), EltRepr a)
instance Elt a => Elt (Product a) where
eltType _ = PairTuple UnitTuple (eltType (undefined::a))
toElt ((),x) = Product (toElt x)
fromElt (Product x) = ((), fromElt x)
instance Elt a => IsProduct Elt (Product a) where
type ProdRepr (Product a) = ((), a)
toProd _ ((),a) = Product a
fromProd _ (Product a) = ((),a)
prod _ _ = ProdRsnoc ProdRunit
instance (Lift Exp a, Elt (Plain a)) => Lift Exp (Product a) where
type Plain (Product a) = Product (Plain a)
lift (Product a) = Exp $ Tuple $ NilTup `SnocTup` lift a
instance Elt a => Unlift Exp (Product (Exp a)) where
unlift t = Product . Exp $ ZeroTupIdx `Prj` t
instance A.Num a => Monoid (Exp (Product a)) where
mempty = 1
mappend = lift2 (mappend :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
instance A.Num a => P.Num (Exp (Product a)) where
(+) = lift2 ((+) :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
() = lift2 (() :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
(*) = lift2 ((*) :: Product (Exp a) -> Product (Exp a) -> Product (Exp a))
negate = lift1 (negate :: Product (Exp a) -> Product (Exp a))
signum = lift1 (signum :: Product (Exp a) -> Product (Exp a))
abs = lift1 (signum :: Product (Exp a) -> Product (Exp a))
fromInteger x = lift (P.fromInteger x :: Product (Exp a))
instance A.Eq a => A.Eq (Product a) where
(==) = lift2 ((==) `on` getProduct)
(/=) = lift2 ((/=) `on` getProduct)
instance A.Ord a => A.Ord (Product a) where
(<) = lift2 ((<) `on` getProduct)
(>) = lift2 ((>) `on` getProduct)
(<=) = lift2 ((<=) `on` getProduct)
(>=) = lift2 ((>=) `on` getProduct)
min x y = lift . Product $ lift2 (min `on` getProduct) x y
max x y = lift . Product $ lift2 (max `on` getProduct) x y
instance Monoid (Exp ()) where
mempty = constant ()
mappend _ _ = constant ()
instance (Elt a, Elt b, Monoid (Exp a), Monoid (Exp b)) => Monoid (Exp (a,b)) where
mempty = lift (mempty :: Exp a, mempty :: Exp b)
mappend x y = let (a1,b1) = unlift x :: (Exp a, Exp b)
(a2,b2) = unlift y
in
lift (a1<>a2, b1<>b2)
instance (Elt a, Elt b, Elt c, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c)) => Monoid (Exp (a,b,c)) where
mempty = lift (mempty :: Exp a, mempty :: Exp b, mempty :: Exp c)
mappend x y = let (a1,b1,c1) = unlift x :: (Exp a, Exp b, Exp c)
(a2,b2,c2) = unlift y
in
lift (a1<>a2, b1<>b2, c1<>c2)
instance (Elt a, Elt b, Elt c, Elt d, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d)) => Monoid (Exp (a,b,c,d)) where
mempty = lift (mempty :: Exp a, mempty :: Exp b, mempty :: Exp c, mempty :: Exp d)
mappend x y = let (a1,b1,c1,d1) = unlift x :: (Exp a, Exp b, Exp c, Exp d)
(a2,b2,c2,d2) = unlift y
in
lift (a1<>a2, b1<>b2, c1<>c2, d1<>d2)
instance (Elt a, Elt b, Elt c, Elt d, Elt e, Monoid (Exp a), Monoid (Exp b), Monoid (Exp c), Monoid (Exp d), Monoid (Exp e)) => Monoid (Exp (a,b,c,d,e)) where
mempty = lift (mempty :: Exp a, mempty :: Exp b, mempty :: Exp c, mempty :: Exp d, mempty :: Exp e)
mappend x y = let (a1,b1,c1,d1,e1) = unlift x :: (Exp a, Exp b, Exp c, Exp d, Exp e)
(a2,b2,c2,d2,e2) = unlift y
in
lift (a1<>a2, b1<>b2, c1<>c2, d1<>d2, e1<>e2)