module Data.Functor.Rep
(
Representable(..)
, tabulated
, Co(..)
, fmapRep
, distributeRep
, apRep
, pureRep
, liftR2
, liftR3
, bindRep
, mfixRep
, mzipRep
, mzipWithRep
, askRep
, localRep
, duplicatedRep
, extendedRep
, duplicateRep
, extendRep
, extractRep
, duplicateRepBy
, extendRepBy
, extractRepBy
) where
import Control.Applicative
import Control.Arrow ((&&&))
import Control.Comonad
import Control.Comonad.Trans.Class
import Control.Comonad.Trans.Traced
import Control.Comonad.Cofree
import Control.Monad.Trans.Identity
import Control.Monad.Reader
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Identity
import Data.Functor.Compose
import Data.Functor.Extend
import Data.Functor.Product
import Data.Profunctor
import Data.Proxy
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import Data.Semigroup hiding (Product)
import Data.Tagged
import Data.Void
import Prelude hiding (lookup)
class Distributive f => Representable f where
type Rep f :: *
tabulate :: (Rep f -> a) -> f a
index :: f a -> Rep f -> a
tabulated :: (Representable f, Representable g, Profunctor p, Functor h)
=> p (f a) (h (g b)) -> p (Rep f -> a) (h (Rep g -> b))
tabulated = dimap tabulate (fmap index)
fmapRep :: Representable f => (a -> b) -> f a -> f b
fmapRep f = tabulate . fmap f . index
pureRep :: Representable f => a -> f a
pureRep = tabulate . const
bindRep :: Representable f => f a -> (a -> f b) -> f b
bindRep m f = tabulate $ \a -> index (f (index m a)) a
mfixRep :: Representable f => (a -> f a) -> f a
mfixRep = tabulate . mfix . fmap index
mzipWithRep :: Representable f => (a -> b -> c) -> f a -> f b -> f c
mzipWithRep f as bs = tabulate $ \k -> f (index as k) (index bs k)
mzipRep :: Representable f => f a -> f b -> f (a, b)
mzipRep as bs = tabulate (index as &&& index bs)
askRep :: Representable f => f (Rep f)
askRep = tabulate id
localRep :: Representable f => (Rep f -> Rep f) -> f a -> f a
localRep f m = tabulate (index m . f)
apRep :: Representable f => f (a -> b) -> f a -> f b
apRep f g = tabulate (index f <*> index g)
distributeRep :: (Representable f, Functor w) => w (f a) -> f (w a)
distributeRep wf = tabulate (\k -> fmap (`index` k) wf)
duplicateRepBy :: Representable f => (Rep f -> Rep f -> Rep f) -> f a -> f (f a)
duplicateRepBy plus w = tabulate (\m -> tabulate (index w . plus m))
extendRepBy :: Representable f => (Rep f -> Rep f -> Rep f) -> (f a -> b) -> f a -> f b
extendRepBy plus f w = tabulate (\m -> f (tabulate (index w . plus m)))
extractRepBy :: Representable f => (Rep f) -> f a -> a
extractRepBy = flip index
duplicatedRep :: (Representable f, Semigroup (Rep f)) => f a -> f (f a)
duplicatedRep = duplicateRepBy (<>)
extendedRep :: (Representable f, Semigroup (Rep f)) => (f a -> b) -> f a -> f b
extendedRep = extendRepBy (<>)
duplicateRep :: (Representable f, Monoid (Rep f)) => f a -> f (f a)
duplicateRep = duplicateRepBy mappend
extendRep :: (Representable f, Monoid (Rep f)) => (f a -> b) -> f a -> f b
extendRep = extendRepBy mappend
extractRep :: (Representable f, Monoid (Rep f)) => f a -> a
extractRep = extractRepBy mempty
instance Representable Proxy where
type Rep Proxy = Void
index Proxy = absurd
tabulate _ = Proxy
instance Representable Identity where
type Rep Identity = ()
index (Identity a) () = a
tabulate f = Identity (f ())
instance Representable (Tagged t) where
type Rep (Tagged t) = ()
index (Tagged a) () = a
tabulate f = Tagged (f ())
instance Representable m => Representable (IdentityT m) where
type Rep (IdentityT m) = Rep m
index (IdentityT m) i = index m i
tabulate = IdentityT . tabulate
instance Representable ((->) e) where
type Rep ((->) e) = e
index = id
tabulate = id
instance Representable m => Representable (ReaderT e m) where
type Rep (ReaderT e m) = (e, Rep m)
index (ReaderT f) (e,k) = index (f e) k
tabulate = ReaderT . fmap tabulate . curry
instance (Representable f, Representable g) => Representable (Compose f g) where
type Rep (Compose f g) = (Rep f, Rep g)
index (Compose fg) (i,j) = index (index fg i) j
tabulate = Compose . tabulate . fmap tabulate . curry
instance Representable w => Representable (TracedT s w) where
type Rep (TracedT s w) = (s, Rep w)
index (TracedT w) (e,k) = index w k e
tabulate = TracedT . unCo . collect (Co . tabulate) . curry
instance (Representable f, Representable g) => Representable (Product f g) where
type Rep (Product f g) = Either (Rep f) (Rep g)
index (Pair a _) (Left i) = index a i
index (Pair _ b) (Right j) = index b j
tabulate f = Pair (tabulate (f . Left)) (tabulate (f . Right))
instance Representable f => Representable (Cofree f) where
type Rep (Cofree f) = Seq (Rep f)
index (a :< as) key = case Seq.viewl key of
Seq.EmptyL -> a
k Seq.:< ks -> index (index as k) ks
tabulate f = f Seq.empty :< tabulate (\k -> tabulate (f . (k Seq.<|)))
newtype Co f a = Co { unCo :: f a } deriving Functor
instance Representable f => Representable (Co f) where
type Rep (Co f) = Rep f
tabulate = Co . tabulate
index (Co f) i = index f i
instance Representable f => Apply (Co f) where
(<.>) = apRep
instance Representable f => Applicative (Co f) where
pure = pureRep
(<*>) = apRep
instance Representable f => Distributive (Co f) where
distribute = distributeRep
instance Representable f => Bind (Co f) where
(>>-) = bindRep
instance Representable f => Monad (Co f) where
return = pureRep
(>>=) = bindRep
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 704
instance (Representable f, Rep f ~ a) => MonadReader a (Co f) where
ask = askRep
local = localRep
#endif
instance (Representable f, Semigroup (Rep f)) => Extend (Co f) where
extended = extendedRep
instance (Representable f, Monoid (Rep f)) => Comonad (Co f) where
extend = extendRep
extract = extractRep
instance ComonadTrans Co where
lower (Co f) = f
liftR2 :: Representable f => (a -> b -> c) -> f a -> f b -> f c
liftR2 f fa fb = tabulate $ \i -> f (index fa i) (index fb i)
liftR3 :: Representable f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftR3 f fa fb fc = tabulate $ \i -> f (index fa i) (index fb i) (index fc i)