#if __GLASGOW_HASKELL__ >= 702
#endif
module Data.Functor.Adjunction
( Adjunction(..)
, adjuncted
, tabulateAdjunction
, indexAdjunction
, zapWithAdjunction
, zipR, unzipR
, unabsurdL, absurdL
, cozipL, uncozipL
, extractL, duplicateL
, splitL, unsplitL
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Control.Arrow ((&&&), (|||))
import Control.Monad.Free
#if __GLASGOW_HASKELL__ < 707
import Control.Monad.Instances ()
#endif
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Reader
import Control.Monad.Trans.Writer
import Control.Comonad
import Control.Comonad.Cofree
import Control.Comonad.Trans.Env
import Control.Comonad.Trans.Traced
import Data.Functor.Identity
import Data.Functor.Compose
import Data.Functor.Product
import Data.Functor.Rep
import Data.Functor.Sum
import Data.Profunctor
import Data.Void
class (Functor f, Representable u) =>
Adjunction f u | f -> u, u -> f where
unit :: a -> u (f a)
counit :: f (u a) -> a
leftAdjunct :: (f a -> b) -> a -> u b
rightAdjunct :: (a -> u b) -> f a -> b
unit = leftAdjunct id
counit = rightAdjunct id
leftAdjunct f = fmap f . unit
rightAdjunct f = counit . fmap f
adjuncted :: (Adjunction f u, Profunctor p, Functor g)
=> p (a -> u b) (g (c -> u d)) -> p (f a -> b) (g (f c -> d))
adjuncted = dimap leftAdjunct (fmap rightAdjunct)
tabulateAdjunction :: Adjunction f u => (f () -> b) -> u b
tabulateAdjunction f = leftAdjunct f ()
indexAdjunction :: Adjunction f u => u b -> f a -> b
indexAdjunction = rightAdjunct . const
zapWithAdjunction :: Adjunction f u => (a -> b -> c) -> u a -> f b -> c
zapWithAdjunction f ua = rightAdjunct (\b -> fmap (flip f b) ua)
splitL :: Adjunction f u => f a -> (a, f ())
splitL = rightAdjunct (flip leftAdjunct () . (,))
unsplitL :: Functor f => a -> f () -> f a
unsplitL = (<$)
extractL :: Adjunction f u => f a -> a
extractL = fst . splitL
duplicateL :: Adjunction f u => f a -> f (f a)
duplicateL as = as <$ as
zipR :: Adjunction f u => (u a, u b) -> u (a, b)
zipR = leftAdjunct (rightAdjunct fst &&& rightAdjunct snd)
unzipR :: Functor u => u (a, b) -> (u a, u b)
unzipR = fmap fst &&& fmap snd
absurdL :: Void -> f Void
absurdL = absurd
unabsurdL :: Adjunction f u => f Void -> Void
unabsurdL = rightAdjunct absurd
cozipL :: Adjunction f u => f (Either a b) -> Either (f a) (f b)
cozipL = rightAdjunct (leftAdjunct Left ||| leftAdjunct Right)
uncozipL :: Functor f => Either (f a) (f b) -> f (Either a b)
uncozipL = fmap Left ||| fmap Right
instance Adjunction ((,) e) ((->) e) where
leftAdjunct f a e = f (e, a)
rightAdjunct f ~(e, a) = f a e
instance Adjunction Identity Identity where
leftAdjunct f = Identity . f . Identity
rightAdjunct f = runIdentity . f . runIdentity
instance Adjunction f g =>
Adjunction (IdentityT f) (IdentityT g) where
unit = IdentityT . leftAdjunct IdentityT
counit = rightAdjunct runIdentityT . runIdentityT
instance Adjunction w m =>
Adjunction (EnvT e w) (ReaderT e m) where
unit = ReaderT . flip fmap EnvT . flip leftAdjunct
counit (EnvT e w) = rightAdjunct (flip runReaderT e) w
instance Adjunction m w =>
Adjunction (WriterT s m) (TracedT s w) where
unit = TracedT . leftAdjunct (\ma s -> WriterT (fmap (\a -> (a, s)) ma))
counit = rightAdjunct (\(t, s) -> ($s) <$> runTracedT t) . runWriterT
instance (Adjunction f g, Adjunction f' g') =>
Adjunction (Compose f' f) (Compose g g') where
unit = Compose . leftAdjunct (leftAdjunct Compose)
counit = rightAdjunct (rightAdjunct getCompose) . getCompose
instance (Adjunction f g, Adjunction f' g') =>
Adjunction (Sum f f') (Product g g') where
unit a = Pair (leftAdjunct InL a) (leftAdjunct InR a)
counit (InL l) = rightAdjunct (\(Pair x _) -> x) l
counit (InR r) = rightAdjunct (\(Pair _ x) -> x) r
instance Adjunction f u =>
Adjunction (Free f) (Cofree u) where
unit a = return a :< tabulateAdjunction (\k -> leftAdjunct (wrap . flip unsplitL k) a)
counit (Pure a) = extract a
counit (Free k) = rightAdjunct (flip indexAdjunction k . unwrap) (extractL k)