{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE UndecidableInstances #-} #if __GLASGOW_HASKELL__ >= 800 -- a) THQ works on cross-compilers and unregisterised GHCs -- b) may make compilation faster as no dynamic loading is ever needed (not sure about this) -- c) removes one hindrance to have code inferred as SafeHaskell safe {-# LANGUAGE TemplateHaskellQuotes #-} #else {-# LANGUAGE TemplateHaskell #-} #endif #include "incoherent-compat.h" #include "overlapping-compat.h" {-| Module: Data.Aeson.TH Copyright: (c) 2011-2016 Bryan O'Sullivan (c) 2011 MailRank, Inc. License: BSD3 Stability: experimental Portability: portable Functions to mechanically derive 'ToJSON' and 'FromJSON' instances. Note that you need to enable the @TemplateHaskell@ language extension in order to use this module. An example shows how instances are generated for arbitrary data types. First we define a data type: @ data D a = Nullary | Unary Int | Product String Char a | Record { testOne :: Double , testTwo :: Bool , testThree :: D a } deriving Eq @ Next we derive the necessary instances. Note that we make use of the feature to change record field names. In this case we drop the first 4 characters of every field name. We also modify constructor names by lower-casing them: @ $('deriveJSON' 'defaultOptions'{'fieldLabelModifier' = 'drop' 4, 'constructorTagModifier' = map toLower} ''D) @ Now we can use the newly created instances. @ d :: D 'Int' d = Record { testOne = 3.14159 , testTwo = 'True' , testThree = Product \"test\" \'A\' 123 } @ >>> fromJSON (toJSON d) == Success d > True This also works for data family instances, but instead of passing in the data family name (with double quotes), we pass in a data family instance constructor (with a single quote): @ data family DF a data instance DF Int = DF1 Int | DF2 Int Int deriving Eq $('deriveJSON' 'defaultOptions' 'DF1) -- Alternatively, one could pass 'DF2 instead @ Please note that you can derive instances for tuples using the following syntax: @ -- FromJSON and ToJSON instances for 4-tuples. $('deriveJSON' 'defaultOptions' ''(,,,)) @ -} module Data.Aeson.TH ( -- * Encoding configuration Options(..) , SumEncoding(..) , defaultOptions , defaultTaggedObject -- * FromJSON and ToJSON derivation , deriveJSON , deriveJSON1 , deriveJSON2 , deriveToJSON , deriveToJSON1 , deriveToJSON2 , deriveFromJSON , deriveFromJSON1 , deriveFromJSON2 , mkToJSON , mkLiftToJSON , mkLiftToJSON2 , mkToEncoding , mkLiftToEncoding , mkLiftToEncoding2 , mkParseJSON , mkLiftParseJSON , mkLiftParseJSON2 ) where import Prelude () import Prelude.Compat hiding (exp) import Control.Applicative ((<|>)) import Data.Aeson (Object, (.=), (.:), FromJSON(..), FromJSON1(..), FromJSON2(..), ToJSON(..), ToJSON1(..), ToJSON2(..)) import Data.Aeson.Types (Options(..), Parser, SumEncoding(..), Value(..), defaultOptions, defaultTaggedObject) import Data.Aeson.Types.Internal ((), Pair, JSONPathElement(Key)) import Data.Aeson.Types.FromJSON (parseOptionalFieldWith) import Control.Monad (liftM2, unless, when) import Data.Foldable (foldr') #if MIN_VERSION_template_haskell(2,8,0) && !MIN_VERSION_template_haskell(2,10,0) import Data.List (nub) #endif import Data.List (find, foldl', genericLength , intercalate , intersperse, partition, union) import Data.List.NonEmpty ((<|), NonEmpty((:|))) import Data.Map (Map) import Data.Maybe (catMaybes, fromMaybe, mapMaybe) import Data.Set (Set) #if MIN_VERSION_template_haskell(2,8,0) import Language.Haskell.TH hiding (Arity) #else import Language.Haskell.TH #endif import Language.Haskell.TH.Syntax (VarStrictType) #if MIN_VERSION_template_haskell(2,7,0) && !(MIN_VERSION_template_haskell(2,8,0)) import Language.Haskell.TH.Lib (starK) #endif #if MIN_VERSION_template_haskell(2,8,0) && !(MIN_VERSION_template_haskell(2,10,0)) import Language.Haskell.TH.Syntax (mkNameG_tc) #endif import Text.Printf (printf) import qualified Data.Aeson as A import qualified Data.Aeson.Encoding.Internal as E import qualified Data.Foldable as F (all) import qualified Data.HashMap.Strict as H (lookup, toList) import qualified Data.List.NonEmpty as NE (drop, length, reverse, splitAt) import qualified Data.Map as M (fromList, findWithDefault, keys, lookup , singleton, size) import qualified Data.Set as Set (empty, insert, member) import qualified Data.Text as T (Text, pack, unpack) import qualified Data.Vector as V (unsafeIndex, null, length, create, fromList) import qualified Data.Vector.Mutable as VM (unsafeNew, unsafeWrite) -------------------------------------------------------------------------------- -- Convenience -------------------------------------------------------------------------------- -- | Generates both 'ToJSON' and 'FromJSON' instance declarations for the given -- data type or data family instance constructor. -- -- This is a convienience function which is equivalent to calling both -- 'deriveToJSON' and 'deriveFromJSON'. deriveJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate 'ToJSON' and 'FromJSON' -- instances. -> Q [Dec] deriveJSON = deriveJSONBoth deriveToJSON deriveFromJSON -- | Generates both 'ToJSON1' and 'FromJSON1' instance declarations for the given -- data type or data family instance constructor. -- -- This is a convienience function which is equivalent to calling both -- 'deriveToJSON1' and 'deriveFromJSON1'. deriveJSON1 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate 'ToJSON1' and 'FromJSON1' -- instances. -> Q [Dec] deriveJSON1 = deriveJSONBoth deriveToJSON1 deriveFromJSON1 -- | Generates both 'ToJSON2' and 'FromJSON2' instance declarations for the given -- data type or data family instance constructor. -- -- This is a convienience function which is equivalent to calling both -- 'deriveToJSON2' and 'deriveFromJSON2'. deriveJSON2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate 'ToJSON2' and 'FromJSON2' -- instances. -> Q [Dec] deriveJSON2 = deriveJSONBoth deriveToJSON2 deriveFromJSON2 -------------------------------------------------------------------------------- -- ToJSON -------------------------------------------------------------------------------- {- TODO: Don't constrain phantom type variables. data Foo a = Foo Int instance (ToJSON a) ⇒ ToJSON Foo where ... The above (ToJSON a) constraint is not necessary and perhaps undesirable. -} -- | Generates a 'ToJSON' instance declaration for the given data type or -- data family instance constructor. deriveToJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'ToJSON' instance -- declaration. -> Q [Dec] deriveToJSON = deriveToJSONCommon toJSONClass -- | Generates a 'ToJSON1' instance declaration for the given data type or -- data family instance constructor. deriveToJSON1 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'ToJSON1' instance -- declaration. -> Q [Dec] deriveToJSON1 = deriveToJSONCommon toJSON1Class -- | Generates a 'ToJSON2' instance declaration for the given data type or -- data family instance constructor. deriveToJSON2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'ToJSON2' instance -- declaration. -> Q [Dec] deriveToJSON2 = deriveToJSONCommon toJSON2Class deriveToJSONCommon :: JSONClass -- ^ The ToJSON variant being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate an instance. -> Q [Dec] deriveToJSONCommon = deriveJSONClass [ (ToJSON, \jc _ -> consToValue jc) , (ToEncoding, \jc _ -> consToEncoding jc) ] -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a 'Value'. mkToJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkToJSON = mkToJSONCommon toJSONClass -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a 'Value' by using the given encoding -- function on occurrences of the last type parameter. mkLiftToJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkLiftToJSON = mkToJSONCommon toJSON1Class -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a 'Value' by using the given encoding -- functions on occurrences of the last two type parameters. mkLiftToJSON2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkLiftToJSON2 = mkToJSONCommon toJSON2Class mkToJSONCommon :: JSONClass -- ^ Which class's method is being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkToJSONCommon = mkFunCommon (\jc _ -> consToValue jc) -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a JSON string. mkToEncoding :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkToEncoding = mkToEncodingCommon toJSONClass -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a JSON string by using the given encoding -- function on occurrences of the last type parameter. mkLiftToEncoding :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkLiftToEncoding = mkToEncodingCommon toJSON1Class -- | Generates a lambda expression which encodes the given data type or -- data family instance constructor as a JSON string by using the given encoding -- functions on occurrences of the last two type parameters. mkLiftToEncoding2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type to encode. -> Q Exp mkLiftToEncoding2 = mkToEncodingCommon toJSON2Class mkToEncodingCommon :: JSONClass -- ^ Which class's method is being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkToEncodingCommon = mkFunCommon (\jc _ -> consToEncoding jc) -- | Helper function used by both 'deriveToJSON' and 'mkToJSON'. Generates -- code to generate a 'Value' of a number of constructors. All constructors -- must be from the same type. consToValue :: JSONClass -- ^ The ToJSON variant being derived. -> Options -- ^ Encoding options. -> [Con] -- ^ Constructors for which to generate JSON generating code. -> Q Exp consToValue _ _ [] = error $ "Data.Aeson.TH.consToValue: " ++ "Not a single constructor given!" consToValue jc opts cons = do value <- newName "value" tjs <- newNameList "_tj" $ arityInt jc tjls <- newNameList "_tjl" $ arityInt jc let zippedTJs = zip tjs tjls interleavedTJs = interleave tjs tjls lamE (map varP $ interleavedTJs ++ [value]) $ caseE (varE value) (matches zippedTJs) where matches tjs = case cons of -- A single constructor is directly encoded. The constructor itself may be -- forgotten. [con] | not (tagSingleConstructors opts) -> [argsToValue jc tjs opts False con] _ | allNullaryToStringTag opts && all isNullary cons -> [ match (conP conName []) (normalB $ conStr opts conName) [] | con <- cons , let conName = getConName con ] | otherwise -> [argsToValue jc tjs opts True con | con <- cons] conStr :: Options -> Name -> Q Exp conStr opts = appE [|String|] . conTxt opts conTxt :: Options -> Name -> Q Exp conTxt opts = appE [|T.pack|] . conStringE opts conStringE :: Options -> Name -> Q Exp conStringE opts = stringE . constructorTagModifier opts . nameBase -- | Helper function used by both 'deriveToJSON' and 'mkToEncoding'. Generates -- code to write out a value for a number of constructors. All constructors -- must be from the same type. consToEncoding :: JSONClass -- ^ The ToJSON variant being derived. -> Options -- ^ Encoding options. -> [Con] -- ^ Constructors for which to generate JSON generating code. -> Q Exp consToEncoding _ _ [] = error $ "Data.Aeson.TH.consToEncoding: " ++ "Not a single constructor given!" consToEncoding jc opts cons = do value <- newName "value" tes <- newNameList "_te" $ arityInt jc tels <- newNameList "_tel" $ arityInt jc let zippedTEs = zip tes tels interleavedTEs = interleave tes tels lamE (map varP $ interleavedTEs ++ [value]) $ caseE (varE value) (matches zippedTEs) where matches tes = case cons of -- A single constructor is directly encoded. The constructor itself may be -- forgotten. [con] | not (tagSingleConstructors opts) -> [argsToEncoding jc tes opts False con] -- Encode just the name of the constructor of a sum type iff all the -- constructors are nullary. _ | allNullaryToStringTag opts && all isNullary cons -> [ match (conP conName []) (normalB $ encStr opts conName) [] | con <- cons , let conName = getConName con ] | otherwise -> [argsToEncoding jc tes opts True con | con <- cons] encStr :: Options -> Name -> Q Exp encStr opts = appE [|E.text|] . conTxt opts -- | If constructor is nullary. isNullary :: Con -> Bool isNullary (NormalC _ []) = True isNullary _ = False sumToValue :: Options -> Bool -> Bool -> Name -> Q Exp -> Q Exp sumToValue opts multiCons nullary conName exp | multiCons = case sumEncoding opts of TwoElemArray -> [|Array|] `appE` ([|V.fromList|] `appE` listE [conStr opts conName, exp]) TaggedObject{tagFieldName, contentsFieldName} -> let tag = infixApp [|T.pack tagFieldName|] [|(.=)|] (conStr opts conName) contents = infixApp [|T.pack contentsFieldName|] [|(.=)|] exp in [|A.object|] `appE` listE (if nullary then [tag] else [tag, contents]) ObjectWithSingleField -> [|A.object|] `appE` listE [ infixApp (conTxt opts conName) [|(.=)|] exp ] UntaggedValue | nullary -> conStr opts conName UntaggedValue -> exp | otherwise = exp -- | Generates code to generate the JSON encoding of a single constructor. argsToValue :: JSONClass -> [(Name, Name)] -> Options -> Bool -> Con -> Q Match -- Polyadic constructors with special case for unary constructors. argsToValue jc tjs opts multiCons (NormalC conName ts) = do (argTys, tvMap) <- reifyConTys jc tjs conName let len = length ts args <- newNameList "arg" len js <- case [ dispatchToJSON jc conName tvMap argTy `appE` varE arg | (arg, argTy) <- zip args argTys ] of -- Single argument is directly converted. [e] -> return e -- Multiple arguments are converted to a JSON array. es -> do mv <- newName "mv" let newMV = bindS (varP mv) ([|VM.unsafeNew|] `appE` litE (integerL $ fromIntegral len)) stmts = [ noBindS $ [|VM.unsafeWrite|] `appE` varE mv `appE` litE (integerL ix) `appE` e | (ix, e) <- zip [(0::Integer)..] es ] ret = noBindS $ [|return|] `appE` varE mv return $ [|Array|] `appE` (varE 'V.create `appE` doE (newMV:stmts++[ret])) match (conP conName $ map varP args) (normalB $ sumToValue opts multiCons (null ts) conName js) [] -- Records. argsToValue jc tjs opts multiCons (RecC conName ts) = case (unwrapUnaryRecords opts, not multiCons, ts) of (True,True,[(_,st,ty)]) -> argsToValue jc tjs opts multiCons (NormalC conName [(st,ty)]) _ -> do (argTys, tvMap) <- reifyConTys jc tjs conName args <- newNameList "arg" $ length ts let exp = [|A.object|] `appE` pairs pairs | omitNothingFields opts = infixApp maybeFields [|(++)|] restFields | otherwise = listE $ map toPair argCons argCons = zip3 args argTys ts maybeFields = [|catMaybes|] `appE` listE (map maybeToPair maybes) restFields = listE $ map toPair rest (maybes, rest) = partition isMaybe argCons maybeToPair (arg, argTy, (field, _, _)) = infixApp ([|keyValuePairWith|] `appE` dispatchToJSON jc conName tvMap argTy `appE` toFieldName field) [|(<$>)|] (varE arg) toPair (arg, argTy, (field, _, _)) = [|keyValuePairWith|] `appE` dispatchToJSON jc conName tvMap argTy `appE` toFieldName field `appE` varE arg toFieldName field = [|T.pack|] `appE` fieldLabelExp opts field match (conP conName $ map varP args) ( normalB $ if multiCons then case sumEncoding opts of TwoElemArray -> [|toJSON|] `appE` tupE [conStr opts conName, exp] TaggedObject{tagFieldName} -> [|A.object|] `appE` -- TODO: Maybe throw an error in case -- tagFieldName overwrites a field in pairs. infixApp (infixApp [|T.pack tagFieldName|] [|(.=)|] (conStr opts conName)) [|(:)|] pairs ObjectWithSingleField -> [|A.object|] `appE` listE [ infixApp (conTxt opts conName) [|(.=)|] exp ] UntaggedValue -> exp else exp ) [] -- Infix constructors. argsToValue jc tjs opts multiCons (InfixC _ conName _) = do ([alTy, arTy], tvMap) <- reifyConTys jc tjs conName al <- newName "argL" ar <- newName "argR" match (infixP (varP al) conName (varP ar)) ( normalB $ sumToValue opts multiCons False conName $ [|toJSON|] `appE` listE [ dispatchToJSON jc conName tvMap aTy `appE` varE a | (a, aTy) <- [(al,alTy), (ar,arTy)] ] ) [] -- Existentially quantified constructors. argsToValue jc tjs opts multiCons (ForallC _ _ con) = argsToValue jc tjs opts multiCons con #if MIN_VERSION_template_haskell(2,11,0) -- GADTs. argsToValue jc tjs opts multiCons (GadtC conNames ts _) = argsToValue jc tjs opts multiCons $ NormalC (head conNames) ts argsToValue jc tjs opts multiCons (RecGadtC conNames ts _) = argsToValue jc tjs opts multiCons $ RecC (head conNames) ts #endif isMaybe :: (a, b, (c, d, Type)) -> Bool isMaybe (_, _, (_, _, AppT (ConT t) _)) = t == ''Maybe isMaybe _ = False (<^>) :: ExpQ -> ExpQ -> ExpQ (<^>) a b = infixApp a [|(E.><)|] b infixr 6 <^> (<:>) :: ExpQ -> ExpQ -> ExpQ (<:>) a b = a <^> [|E.colon|] <^> b infixr 5 <:> (<%>) :: ExpQ -> ExpQ -> ExpQ (<%>) a b = a <^> [|E.comma|] <^> b infixr 4 <%> array :: ExpQ -> ExpQ array exp = [|E.wrapArray|] `appE` exp object :: ExpQ -> ExpQ object exp = [|E.wrapObject|] `appE` exp sumToEncoding :: Options -> Bool -> Bool -> Name -> Q Exp -> Q Exp sumToEncoding opts multiCons nullary conName exp | multiCons = let fexp = exp in case sumEncoding opts of TwoElemArray -> array (encStr opts conName <%> fexp) TaggedObject{tagFieldName, contentsFieldName} -> let tag = [|E.text (T.pack tagFieldName)|] <:> encStr opts conName contents = [|E.text (T.pack contentsFieldName)|] <:> fexp in object $ if nullary then tag else tag <%> contents ObjectWithSingleField -> object (encStr opts conName <:> fexp) UntaggedValue | nullary -> encStr opts conName UntaggedValue -> exp | otherwise = exp -- | Generates code to generate the JSON encoding of a single constructor. argsToEncoding :: JSONClass -> [(Name, Name)] -> Options -> Bool -> Con -> Q Match -- Polyadic constructors with special case for unary constructors. argsToEncoding jc tes opts multiCons (NormalC conName ts) = do (argTys, tvMap) <- reifyConTys jc tes conName let len = length ts args <- newNameList "arg" len js <- case zip args argTys of -- Nullary constructors are converted to an empty array. [] -> return [| E.emptyArray_ |] -- Single argument is directly converted. [(e,eTy)] -> return (dispatchToEncoding jc conName tvMap eTy `appE` varE e) -- Multiple arguments are converted to a JSON array. es -> return (array (foldr1 (<%>) [ dispatchToEncoding jc conName tvMap xTy `appE` varE x | (x,xTy) <- es ])) match (conP conName $ map varP args) (normalB $ sumToEncoding opts multiCons (null ts) conName js) [] -- Records. argsToEncoding jc tes opts multiCons (RecC conName ts) = case (unwrapUnaryRecords opts, not multiCons, ts) of (True,True,[(_,st,ty)]) -> argsToEncoding jc tes opts multiCons (NormalC conName [(st,ty)]) _ -> do args <- newNameList "arg" $ length ts (argTys, tvMap) <- reifyConTys jc tes conName let exp = object objBody objBody = [|E.econcat|] `appE` ([|intersperse E.comma|] `appE` pairs) pairs | omitNothingFields opts = infixApp maybeFields [|(++)|] restFields | otherwise = listE (map toPair argCons) argCons = zip3 args argTys ts maybeFields = [|catMaybes|] `appE` listE (map maybeToPair maybes) restFields = listE (map toPair rest) (maybes, rest) = partition isMaybe argCons maybeToPair (arg, argTy, (field, _, _)) = infixApp (infixApp (infixE (Just $ toFieldName field <^> [|E.colon|]) [|(E.><)|] Nothing) [|(.)|] (dispatchToEncoding jc conName tvMap argTy)) [|(<$>)|] (varE arg) toPair (arg, argTy, (field, _, _)) = toFieldName field <:> dispatchToEncoding jc conName tvMap argTy `appE` varE arg toFieldName field = [|E.text|] `appE` ([|T.pack|] `appE` fieldLabelExp opts field) match (conP conName $ map varP args) ( normalB $ if multiCons then case sumEncoding opts of TwoElemArray -> array $ encStr opts conName <%> exp TaggedObject{tagFieldName} -> object $ ([|E.text (T.pack tagFieldName)|] <:> encStr opts conName) <%> objBody ObjectWithSingleField -> object $ encStr opts conName <:> exp UntaggedValue -> exp else exp ) [] -- Infix constructors. argsToEncoding jc tes opts multiCons (InfixC _ conName _) = do al <- newName "argL" ar <- newName "argR" ([alTy,arTy], tvMap) <- reifyConTys jc tes conName match (infixP (varP al) conName (varP ar)) ( normalB $ sumToEncoding opts multiCons False conName $ array (foldr1 (<%>) [ dispatchToEncoding jc conName tvMap aTy `appE` varE a | (a,aTy) <- [(al,alTy), (ar,arTy)] ]) ) [] -- Existentially quantified constructors. argsToEncoding jc tes opts multiCons (ForallC _ _ con) = argsToEncoding jc tes opts multiCons con #if MIN_VERSION_template_haskell(2,11,0) -- GADTs. argsToEncoding jc tes opts multiCons (GadtC conNames ts _) = argsToEncoding jc tes opts multiCons $ NormalC (head conNames) ts argsToEncoding jc tes opts multiCons (RecGadtC conNames ts _) = argsToEncoding jc tes opts multiCons $ RecC (head conNames) ts #endif -------------------------------------------------------------------------------- -- FromJSON -------------------------------------------------------------------------------- -- | Generates a 'FromJSON' instance declaration for the given data type or -- data family instance constructor. deriveFromJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'FromJSON' instance -- declaration. -> Q [Dec] deriveFromJSON = deriveFromJSONCommon fromJSONClass -- | Generates a 'FromJSON1' instance declaration for the given data type or -- data family instance constructor. deriveFromJSON1 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'FromJSON1' instance -- declaration. -> Q [Dec] deriveFromJSON1 = deriveFromJSONCommon fromJSON1Class -- | Generates a 'FromJSON2' instance declaration for the given data type or -- data family instance constructor. deriveFromJSON2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a 'FromJSON3' instance -- declaration. -> Q [Dec] deriveFromJSON2 = deriveFromJSONCommon fromJSON2Class deriveFromJSONCommon :: JSONClass -- ^ The FromJSON variant being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate an instance. -- declaration. -> Q [Dec] deriveFromJSONCommon = deriveJSONClass [(ParseJSON, consFromJSON)] -- | Generates a lambda expression which parses the JSON encoding of the given -- data type or data family instance constructor. mkParseJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkParseJSON = mkParseJSONCommon fromJSONClass -- | Generates a lambda expression which parses the JSON encoding of the given -- data type or data family instance constructor by using the given parsing -- function on occurrences of the last type parameter. mkLiftParseJSON :: Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkLiftParseJSON = mkParseJSONCommon fromJSON1Class -- | Generates a lambda expression which parses the JSON encoding of the given -- data type or data family instance constructor by using the given parsing -- functions on occurrences of the last two type parameters. mkLiftParseJSON2 :: Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkLiftParseJSON2 = mkParseJSONCommon fromJSON2Class mkParseJSONCommon :: JSONClass -- ^ Which class's method is being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkParseJSONCommon = mkFunCommon consFromJSON -- | Helper function used by both 'deriveFromJSON' and 'mkParseJSON'. Generates -- code to parse the JSON encoding of a number of constructors. All constructors -- must be from the same type. consFromJSON :: JSONClass -- ^ The FromJSON variant being derived. -> Name -- ^ Name of the type to which the constructors belong. -> Options -- ^ Encoding options -> [Con] -- ^ Constructors for which to generate JSON parsing code. -> Q Exp consFromJSON _ _ _ [] = error $ "Data.Aeson.TH.consFromJSON: " ++ "Not a single constructor given!" consFromJSON jc tName opts cons = do value <- newName "value" pjs <- newNameList "_pj" $ arityInt jc pjls <- newNameList "_pjl" $ arityInt jc let zippedPJs = zip pjs pjls interleavedPJs = interleave pjs pjls lamE (map varP $ interleavedPJs ++ [value]) $ lamExpr value zippedPJs where lamExpr value pjs = case cons of [con] | not (tagSingleConstructors opts) -> parseArgs jc pjs tName opts con (Right value) _ | sumEncoding opts == UntaggedValue -> parseUntaggedValue pjs cons value | otherwise -> caseE (varE value) $ if allNullaryToStringTag opts && all isNullary cons then allNullaryMatches else mixedMatches pjs allNullaryMatches = [ do txt <- newName "txt" match (conP 'String [varP txt]) (guardedB $ [ liftM2 (,) (normalG $ infixApp (varE txt) [|(==)|] ([|T.pack|] `appE` conStringE opts conName) ) ([|pure|] `appE` conE conName) | con <- cons , let conName = getConName con ] ++ [ liftM2 (,) (normalG [|otherwise|]) ( [|noMatchFail|] `appE` litE (stringL $ show tName) `appE` ([|T.unpack|] `appE` varE txt) ) ] ) [] , do other <- newName "other" match (varP other) (normalB $ [|noStringFail|] `appE` litE (stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] mixedMatches pjs = case sumEncoding opts of TaggedObject {tagFieldName, contentsFieldName} -> parseObject $ parseTaggedObject pjs tagFieldName contentsFieldName UntaggedValue -> error "UntaggedValue: Should be handled already" ObjectWithSingleField -> parseObject $ parseObjectWithSingleField pjs TwoElemArray -> [ do arr <- newName "array" match (conP 'Array [varP arr]) (guardedB [ liftM2 (,) (normalG $ infixApp ([|V.length|] `appE` varE arr) [|(==)|] (litE $ integerL 2)) (parse2ElemArray pjs arr) , liftM2 (,) (normalG [|otherwise|]) ([|not2ElemArray|] `appE` litE (stringL $ show tName) `appE` ([|V.length|] `appE` varE arr)) ] ) [] , do other <- newName "other" match (varP other) ( normalB $ [|noArrayFail|] `appE` litE (stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] parseObject f = [ do obj <- newName "obj" match (conP 'Object [varP obj]) (normalB $ f obj) [] , do other <- newName "other" match (varP other) ( normalB $ [|noObjectFail|] `appE` litE (stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] parseTaggedObject pjs typFieldName valFieldName obj = do conKey <- newName "conKey" doE [ bindS (varP conKey) (infixApp (varE obj) [|(.:)|] ([|T.pack|] `appE` stringE typFieldName)) , noBindS $ parseContents pjs conKey (Left (valFieldName, obj)) 'conNotFoundFailTaggedObject ] parseUntaggedValue pjs cons' conVal = foldr1 (\e e' -> infixApp e [|(<|>)|] e') (map (\x -> parseValue pjs x conVal) cons') parseValue _pjs (NormalC conName []) conVal = do str <- newName "str" caseE (varE conVal) [ match (conP 'String [varP str]) (guardedB [ liftM2 (,) (normalG $ infixApp (varE str) [|(==)|] ([|T.pack|] `appE` conStringE opts conName) ) ([|pure|] `appE` conE conName) ] ) [] , matchFailed tName conName "String" ] parseValue pjs con conVal = parseArgs jc pjs tName opts con (Right conVal) parse2ElemArray pjs arr = do conKey <- newName "conKey" conVal <- newName "conVal" let letIx n ix = valD (varP n) (normalB ([|V.unsafeIndex|] `appE` varE arr `appE` litE (integerL ix))) [] letE [ letIx conKey 0 , letIx conVal 1 ] (caseE (varE conKey) [ do txt <- newName "txt" match (conP 'String [varP txt]) (normalB $ parseContents pjs txt (Right conVal) 'conNotFoundFail2ElemArray ) [] , do other <- newName "other" match (varP other) ( normalB $ [|firstElemNoStringFail|] `appE` litE (stringL $ show tName) `appE` ([|valueConName|] `appE` varE other) ) [] ] ) parseObjectWithSingleField pjs obj = do conKey <- newName "conKey" conVal <- newName "conVal" caseE ([e|H.toList|] `appE` varE obj) [ match (listP [tupP [varP conKey, varP conVal]]) (normalB $ parseContents pjs conKey (Right conVal) 'conNotFoundFailObjectSingleField) [] , do other <- newName "other" match (varP other) (normalB $ [|wrongPairCountFail|] `appE` litE (stringL $ show tName) `appE` ([|show . length|] `appE` varE other) ) [] ] parseContents pjs conKey contents errorFun = caseE (varE conKey) [ match wildP ( guardedB $ [ do g <- normalG $ infixApp (varE conKey) [|(==)|] ([|T.pack|] `appE` conNameExp opts con) e <- parseArgs jc pjs tName opts con contents return (g, e) | con <- cons ] ++ [ liftM2 (,) (normalG [e|otherwise|]) ( varE errorFun `appE` litE (stringL $ show tName) `appE` listE (map ( litE . stringL . constructorTagModifier opts . nameBase . getConName ) cons ) `appE` ([|T.unpack|] `appE` varE conKey) ) ] ) [] ] parseNullaryMatches :: Name -> Name -> [Q Match] parseNullaryMatches tName conName = [ do arr <- newName "arr" match (conP 'Array [varP arr]) (guardedB [ liftM2 (,) (normalG $ [|V.null|] `appE` varE arr) ([|pure|] `appE` conE conName) , liftM2 (,) (normalG [|otherwise|]) (parseTypeMismatch tName conName (litE $ stringL "an empty Array") (infixApp (litE $ stringL "Array of length ") [|(++)|] ([|show . V.length|] `appE` varE arr) ) ) ] ) [] , matchFailed tName conName "Array" ] parseUnaryMatches :: JSONClass -> TyVarMap -> Type -> Name -> [Q Match] parseUnaryMatches jc tvMap argTy conName = [ do arg <- newName "arg" match (varP arg) ( normalB $ infixApp (conE conName) [|(<$>)|] (dispatchParseJSON jc conName tvMap argTy `appE` varE arg) ) [] ] parseRecord :: JSONClass -> TyVarMap -> [Type] -> Options -> Name -> Name -> [VarStrictType] -> Name -> ExpQ parseRecord jc tvMap argTys opts tName conName ts obj = foldl' (\a b -> infixApp a [|(<*>)|] b) (infixApp (conE conName) [|(<$>)|] x) xs where x:xs = [ [|lookupField|] `appE` dispatchParseJSON jc conName tvMap argTy `appE` litE (stringL $ show tName) `appE` litE (stringL $ constructorTagModifier opts $ nameBase conName) `appE` varE obj `appE` ( [|T.pack|] `appE` fieldLabelExp opts field ) | ((field, _, _), argTy) <- zip ts argTys ] getValField :: Name -> String -> [MatchQ] -> Q Exp getValField obj valFieldName matches = do val <- newName "val" doE [ bindS (varP val) $ infixApp (varE obj) [|(.:)|] ([|T.pack|] `appE` litE (stringL valFieldName)) , noBindS $ caseE (varE val) matches ] matchCases :: Either (String, Name) Name -> [MatchQ] -> Q Exp matchCases (Left (valFieldName, obj)) = getValField obj valFieldName matchCases (Right valName) = caseE (varE valName) -- | Generates code to parse the JSON encoding of a single constructor. parseArgs :: JSONClass -- ^ The FromJSON variant being derived. -> [(Name, Name)] -- ^ The names of the encoding/decoding function arguments. -> Name -- ^ Name of the type to which the constructor belongs. -> Options -- ^ Encoding options. -> Con -- ^ Constructor for which to generate JSON parsing code. -> Either (String, Name) Name -- ^ Left (valFieldName, objName) or -- Right valName -> Q Exp -- Nullary constructors. parseArgs jc pjs _ _ (NormalC conName []) (Left _) = do ([], _) <- reifyConTys jc pjs conName [|pure|] `appE` conE conName parseArgs jc pjs tName _ (NormalC conName []) (Right valName) = do ([], _) <- reifyConTys jc pjs conName caseE (varE valName) $ parseNullaryMatches tName conName -- Unary constructors. parseArgs jc pjs _ _ (NormalC conName [_]) contents = do ([argTy], tvMap) <- reifyConTys jc pjs conName matchCases contents $ parseUnaryMatches jc tvMap argTy conName -- Polyadic constructors. parseArgs jc pjs tName _ (NormalC conName ts) contents = do (argTys, tvMap) <- reifyConTys jc pjs conName let len = genericLength ts matchCases contents $ parseProduct jc tvMap argTys tName conName len -- Records. parseArgs jc pjs tName opts (RecC conName ts) (Left (_, obj)) = do (argTys, tvMap) <- reifyConTys jc pjs conName parseRecord jc tvMap argTys opts tName conName ts obj parseArgs jc pjs tName opts (RecC conName ts) (Right valName) = case (unwrapUnaryRecords opts,ts) of (True,[(_,st,ty)])-> parseArgs jc pjs tName opts (NormalC conName [(st,ty)]) (Right valName) _ -> do obj <- newName "recObj" (argTys, tvMap) <- reifyConTys jc pjs conName caseE (varE valName) [ match (conP 'Object [varP obj]) (normalB $ parseRecord jc tvMap argTys opts tName conName ts obj) [] , matchFailed tName conName "Object" ] -- Infix constructors. Apart from syntax these are the same as -- polyadic constructors. parseArgs jc pjs tName _ (InfixC _ conName _) contents = do (argTys, tvMap) <- reifyConTys jc pjs conName matchCases contents $ parseProduct jc tvMap argTys tName conName 2 -- Existentially quantified constructors. We ignore the quantifiers -- and proceed with the contained constructor. parseArgs jc pjs tName opts (ForallC _ _ con) contents = parseArgs jc pjs tName opts con contents #if MIN_VERSION_template_haskell(2,11,0) -- GADTs. We ignore the refined return type and proceed as if it were a -- NormalC or RecC. parseArgs jc pjs tName opts (GadtC conNames ts _) contents = parseArgs jc pjs tName opts (NormalC (head conNames) ts) contents parseArgs jc pjs tName opts (RecGadtC conNames ts _) contents = parseArgs jc pjs tName opts (RecC (head conNames) ts) contents #endif -- | Generates code to parse the JSON encoding of an n-ary -- constructor. parseProduct :: JSONClass -- ^ The FromJSON variant being derived. -> TyVarMap -- ^ Maps the last type variables to their decoding -- function arguments. -> [Type] -- ^ The argument types of the constructor. -> Name -- ^ Name of the type to which the constructor belongs. -> Name -- ^ 'Con'structor name. -> Integer -- ^ 'Con'structor arity. -> [Q Match] parseProduct jc tvMap argTys tName conName numArgs = [ do arr <- newName "arr" -- List of: "parseJSON (arr `V.unsafeIndex` )" let x:xs = [ dispatchParseJSON jc conName tvMap argTy `appE` infixApp (varE arr) [|V.unsafeIndex|] (litE $ integerL ix) | (argTy, ix) <- zip argTys [0 .. numArgs - 1] ] match (conP 'Array [varP arr]) (normalB $ condE ( infixApp ([|V.length|] `appE` varE arr) [|(==)|] (litE $ integerL numArgs) ) ( foldl' (\a b -> infixApp a [|(<*>)|] b) (infixApp (conE conName) [|(<$>)|] x) xs ) ( parseTypeMismatch tName conName (litE $ stringL $ "Array of length " ++ show numArgs) ( infixApp (litE $ stringL "Array of length ") [|(++)|] ([|show . V.length|] `appE` varE arr) ) ) ) [] , matchFailed tName conName "Array" ] -------------------------------------------------------------------------------- -- Parsing errors -------------------------------------------------------------------------------- matchFailed :: Name -> Name -> String -> MatchQ matchFailed tName conName expected = do other <- newName "other" match (varP other) ( normalB $ parseTypeMismatch tName conName (litE $ stringL expected) ([|valueConName|] `appE` varE other) ) [] parseTypeMismatch :: Name -> Name -> ExpQ -> ExpQ -> ExpQ parseTypeMismatch tName conName expected actual = foldl appE [|parseTypeMismatch'|] [ litE $ stringL $ nameBase conName , litE $ stringL $ show tName , expected , actual ] class LookupField a where lookupField :: (Value -> Parser a) -> String -> String -> Object -> T.Text -> Parser a instance OVERLAPPABLE_ LookupField a where lookupField = lookupFieldWith instance INCOHERENT_ LookupField (Maybe a) where lookupField pj _ _ = parseOptionalFieldWith pj lookupFieldWith :: (Value -> Parser a) -> String -> String -> Object -> T.Text -> Parser a lookupFieldWith pj tName rec obj key = case H.lookup key obj of Nothing -> unknownFieldFail tName rec (T.unpack key) Just v -> pj v Key key keyValuePairWith :: (v -> Value) -> T.Text -> v -> Pair keyValuePairWith tj name value = (name, tj value) unknownFieldFail :: String -> String -> String -> Parser fail unknownFieldFail tName rec key = fail $ printf "When parsing the record %s of type %s the key %s was not present." rec tName key noArrayFail :: String -> String -> Parser fail noArrayFail t o = fail $ printf "When parsing %s expected Array but got %s." t o noObjectFail :: String -> String -> Parser fail noObjectFail t o = fail $ printf "When parsing %s expected Object but got %s." t o firstElemNoStringFail :: String -> String -> Parser fail firstElemNoStringFail t o = fail $ printf "When parsing %s expected an Array of 2 elements where the first element is a String but got %s at the first element." t o wrongPairCountFail :: String -> String -> Parser fail wrongPairCountFail t n = fail $ printf "When parsing %s expected an Object with a single tag/contents pair but got %s pairs." t n noStringFail :: String -> String -> Parser fail noStringFail t o = fail $ printf "When parsing %s expected String but got %s." t o noMatchFail :: String -> String -> Parser fail noMatchFail t o = fail $ printf "When parsing %s expected a String with the tag of a constructor but got %s." t o not2ElemArray :: String -> Int -> Parser fail not2ElemArray t i = fail $ printf "When parsing %s expected an Array of 2 elements but got %i elements" t i conNotFoundFail2ElemArray :: String -> [String] -> String -> Parser fail conNotFoundFail2ElemArray t cs o = fail $ printf "When parsing %s expected a 2-element Array with a tag and contents element where the tag is one of [%s], but got %s." t (intercalate ", " cs) o conNotFoundFailObjectSingleField :: String -> [String] -> String -> Parser fail conNotFoundFailObjectSingleField t cs o = fail $ printf "When parsing %s expected an Object with a single tag/contents pair where the tag is one of [%s], but got %s." t (intercalate ", " cs) o conNotFoundFailTaggedObject :: String -> [String] -> String -> Parser fail conNotFoundFailTaggedObject t cs o = fail $ printf "When parsing %s expected an Object with a tag field where the value is one of [%s], but got %s." t (intercalate ", " cs) o parseTypeMismatch' :: String -> String -> String -> String -> Parser fail parseTypeMismatch' conName tName expected actual = fail $ printf "When parsing the constructor %s of type %s expected %s but got %s." conName tName expected actual -------------------------------------------------------------------------------- -- Shared ToJSON and FromJSON code -------------------------------------------------------------------------------- -- | Functionality common to 'deriveJSON', 'deriveJSON1', and 'deriveJSON2'. deriveJSONBoth :: (Options -> Name -> Q [Dec]) -- ^ Function which derives a flavor of 'ToJSON'. -> (Options -> Name -> Q [Dec]) -- ^ Function which derives a flavor of 'FromJSON'. -> Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate 'ToJSON' and 'FromJSON' -- instances. -> Q [Dec] deriveJSONBoth dtj dfj opts name = liftM2 (++) (dtj opts name) (dfj opts name) -- | Functionality common to @deriveToJSON(1)(2)@ and @deriveFromJSON(1)(2)@. deriveJSONClass :: [(JSONFun, JSONClass -> Name -> Options -> [Con] -> Q Exp)] -- ^ The class methods and the functions which derive them. -> JSONClass -- ^ The class for which to generate an instance. -> Options -- ^ Encoding options. -> Name -- ^ Name of the type for which to generate a class instance -- declaration. -> Q [Dec] deriveJSONClass consFuns jc opts name = withType name $ \name' ctxt tvbs cons mbTys -> (:[]) <$> fromCons name' ctxt tvbs cons mbTys where fromCons :: Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q Dec fromCons name' ctxt tvbs cons mbTys = do (instanceCxt, instanceType) <- buildTypeInstance name' jc ctxt tvbs mbTys instanceD (return instanceCxt) (return instanceType) (methodDecs name' cons) methodDecs :: Name -> [Con] -> [Q Dec] methodDecs name' cons = flip map consFuns $ \(jf, jfMaker) -> funD (jsonFunValName jf (arity jc)) [ clause [] (normalB $ jfMaker jc name' opts cons) [] ] mkFunCommon :: (JSONClass -> Name -> Options -> [Con] -> Q Exp) -- ^ The function which derives the expression. -> JSONClass -- ^ Which class's method is being derived. -> Options -- ^ Encoding options. -> Name -- ^ Name of the encoded type. -> Q Exp mkFunCommon consFun jc opts name = withType name fromCons where fromCons :: Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q Exp fromCons name' ctxt tvbs cons mbTys = do -- We force buildTypeInstance here since it performs some checks for whether -- or not the provided datatype's kind matches the derived method's -- typeclass, and produces errors if it can't. !_ <- buildTypeInstance name' jc ctxt tvbs mbTys consFun jc name' opts cons dispatchFunByType :: JSONClass -> JSONFun -> Name -> TyVarMap -> Bool -- True if we are using the function argument that works -- on lists (e.g., [a] -> Value). False is we are using -- the function argument that works on single values -- (e.g., a -> Value). -> Type -> Q Exp dispatchFunByType _ jf _ tvMap list (VarT tyName) = varE $ case M.lookup tyName tvMap of Just (tfjExp, tfjlExp) -> if list then tfjlExp else tfjExp Nothing -> jsonFunValOrListName list jf Arity0 dispatchFunByType jc jf conName tvMap list (SigT ty _) = dispatchFunByType jc jf conName tvMap list ty dispatchFunByType jc jf conName tvMap list (ForallT _ _ ty) = dispatchFunByType jc jf conName tvMap list ty dispatchFunByType jc jf conName tvMap list ty = do let tyCon :: Type tyArgs :: [Type] tyCon :| tyArgs = unapplyTy ty numLastArgs :: Int numLastArgs = min (arityInt jc) (length tyArgs) lhsArgs, rhsArgs :: [Type] (lhsArgs, rhsArgs) = splitAt (length tyArgs - numLastArgs) tyArgs tyVarNames :: [Name] tyVarNames = M.keys tvMap itf <- isTyFamily tyCon if any (`mentionsName` tyVarNames) lhsArgs || itf && any (`mentionsName` tyVarNames) tyArgs then outOfPlaceTyVarError jc conName else if any (`mentionsName` tyVarNames) rhsArgs then appsE $ varE (jsonFunValOrListName list jf $ toEnum numLastArgs) : zipWith (dispatchFunByType jc jf conName tvMap) (cycle [False,True]) (interleave rhsArgs rhsArgs) else varE $ jsonFunValOrListName list jf Arity0 dispatchToJSON, dispatchToEncoding, dispatchParseJSON :: JSONClass -> Name -> TyVarMap -> Type -> Q Exp dispatchToJSON jc n tvMap = dispatchFunByType jc ToJSON n tvMap False dispatchToEncoding jc n tvMap = dispatchFunByType jc ToEncoding n tvMap False dispatchParseJSON jc n tvMap = dispatchFunByType jc ParseJSON n tvMap False -------------------------------------------------------------------------------- -- Utility functions -------------------------------------------------------------------------------- -- | Boilerplate for top level splices. -- -- The given 'Name' must meet one of two criteria: -- -- 1. It must be the name of a type constructor of a plain data type or newtype. -- 2. It must be the name of a data family instance or newtype instance constructor. -- Any other value will result in an exception. withType :: Name -> (Name -> Cxt -> [TyVarBndr] -> [Con] -> Maybe [Type] -> Q a) -- ^ Function that generates the actual code. Will be applied -- to the datatype/data family 'Name', datatype context, type -- variable binders and constructors extracted from the given -- 'Name'. If the 'Name' is from a data family instance -- constructor, it will also have its instantiated types; -- otherwise, it will be 'Nothing'. -> Q a -- ^ Resulting value in the 'Q'uasi monad. withType name f = do info <- reify name case info of TyConI dec -> case dec of #if MIN_VERSION_template_haskell(2,11,0) DataD ctxt _ tvbs _ cons _ -> f name ctxt tvbs cons Nothing NewtypeD ctxt _ tvbs _ con _ -> f name ctxt tvbs [con] Nothing #else DataD ctxt _ tvbs cons _ -> f name ctxt tvbs cons Nothing NewtypeD ctxt _ tvbs con _ -> f name ctxt tvbs [con] Nothing #endif other -> fail $ ns ++ "Unsupported type: " ++ show other #if MIN_VERSION_template_haskell(2,11,0) DataConI _ _ parentName -> do #else DataConI _ _ parentName _ -> do #endif parentInfo <- reify parentName case parentInfo of #if MIN_VERSION_template_haskell(2,11,0) FamilyI (DataFamilyD _ tvbs _) decs -> #else FamilyI (FamilyD DataFam _ tvbs _) decs -> #endif let instDec = flip find decs $ \dec -> case dec of #if MIN_VERSION_template_haskell(2,11,0) DataInstD _ _ _ _ cons _ -> any ((name ==) . getConName) cons NewtypeInstD _ _ _ _ con _ -> name == getConName con #else DataInstD _ _ _ cons _ -> any ((name ==) . getConName) cons NewtypeInstD _ _ _ con _ -> name == getConName con #endif _ -> error $ ns ++ "Must be a data or newtype instance." in case instDec of #if MIN_VERSION_template_haskell(2,11,0) Just (DataInstD ctxt _ instTys _ cons _) -> f parentName ctxt tvbs cons $ Just instTys Just (NewtypeInstD ctxt _ instTys _ con _) -> f parentName ctxt tvbs [con] $ Just instTys #else Just (DataInstD ctxt _ instTys cons _) -> f parentName ctxt tvbs cons $ Just instTys Just (NewtypeInstD ctxt _ instTys con _) -> f parentName ctxt tvbs [con] $ Just instTys #endif _ -> fail $ ns ++ "Could not find data or newtype instance constructor." _ -> fail $ ns ++ "Data constructor " ++ show name ++ " is not from a data family instance constructor." #if MIN_VERSION_template_haskell(2,11,0) FamilyI DataFamilyD{} _ -> #else FamilyI (FamilyD DataFam _ _ _) _ -> #endif fail $ ns ++ "Cannot use a data family name. Use a data family instance constructor instead." _ -> fail $ ns ++ "I need the name of a plain data type constructor, " ++ "or a data family instance constructor." where ns :: String ns = "Data.Aeson.TH.withType: " -- | Infer the context and instance head needed for a FromJSON or ToJSON instance. buildTypeInstance :: Name -- ^ The type constructor or data family name -> JSONClass -- ^ The typeclass to derive -> Cxt -- ^ The datatype context -> [TyVarBndr] -- ^ The type variables from the data type/data family declaration -> Maybe [Type] -- ^ 'Just' the types used to instantiate a data family instance, -- or 'Nothing' if it's a plain data type -> Q (Cxt, Type) -- ^ The resulting 'Cxt' and 'Type' to use in a class instance -- Plain data type/newtype case buildTypeInstance tyConName jc dataCxt tvbs Nothing = let varTys :: [Type] varTys = map tvbToType tvbs in buildTypeInstanceFromTys tyConName jc dataCxt varTys False -- Data family instance case -- -- The CPP is present to work around a couple of annoying old GHC bugs. -- See Note [Polykinded data families in Template Haskell] buildTypeInstance dataFamName jc dataCxt tvbs (Just instTysAndKinds) = do #if !(MIN_VERSION_template_haskell(2,8,0)) || MIN_VERSION_template_haskell(2,10,0) let instTys :: [Type] instTys = zipWith stealKindForType tvbs instTysAndKinds #else let kindVarNames :: [Name] kindVarNames = nub $ concatMap (tyVarNamesOfType . tvbKind) tvbs numKindVars :: Int numKindVars = length kindVarNames givenKinds, givenKinds' :: [Kind] givenTys :: [Type] (givenKinds, givenTys) = splitAt numKindVars instTysAndKinds givenKinds' = map sanitizeStars givenKinds -- A GHC 7.6-specific bug requires us to replace all occurrences of -- (ConT GHC.Prim.*) with StarT, or else Template Haskell will reject it. -- Luckily, (ConT GHC.Prim.*) only seems to occur in this one spot. sanitizeStars :: Kind -> Kind sanitizeStars = go where go :: Kind -> Kind go (AppT t1 t2) = AppT (go t1) (go t2) go (SigT t k) = SigT (go t) (go k) go (ConT n) | n == starKindName = StarT go t = t -- It's quite awkward to import * from GHC.Prim, so we'll just -- hack our way around it. starKindName :: Name starKindName = mkNameG_tc "ghc-prim" "GHC.Prim" "*" -- If we run this code with GHC 7.8, we might have to generate extra type -- variables to compensate for any type variables that Template Haskell -- eta-reduced away. -- See Note [Polykinded data families in Template Haskell] xTypeNames <- newNameList "tExtra" (length tvbs - length givenTys) let xTys :: [Type] xTys = map VarT xTypeNames -- ^ Because these type variables were eta-reduced away, we can only -- determine their kind by using stealKindForType. Therefore, we mark -- them as VarT to ensure they will be given an explicit kind annotation -- (and so the kind inference machinery has the right information). substNamesWithKinds :: [(Name, Kind)] -> Type -> Type substNamesWithKinds nks t = foldr' (uncurry substNameWithKind) t nks -- The types from the data family instance might not have explicit kind -- annotations, which the kind machinery needs to work correctly. To -- compensate, we use stealKindForType to explicitly annotate any -- types without kind annotations. instTys :: [Type] instTys = map (substNamesWithKinds (zip kindVarNames givenKinds')) -- Note that due to a GHC 7.8-specific bug -- (see Note [Polykinded data families in Template Haskell]), -- there may be more kind variable names than there are kinds -- to substitute. But this is OK! If a kind is eta-reduced, it -- means that is was not instantiated to something more specific, -- so we need not substitute it. Using stealKindForType will -- grab the correct kind. $ zipWith stealKindForType tvbs (givenTys ++ xTys) #endif buildTypeInstanceFromTys dataFamName jc dataCxt instTys True -- For the given Types, generate an instance context and head. buildTypeInstanceFromTys :: Name -- ^ The type constructor or data family name -> JSONClass -- ^ The typeclass to derive -> Cxt -- ^ The datatype context -> [Type] -- ^ The types to instantiate the instance with -> Bool -- ^ True if it's a data family, False otherwise -> Q (Cxt, Type) buildTypeInstanceFromTys tyConName jc dataCxt varTysOrig isDataFamily = do -- Make sure to expand through type/kind synonyms! Otherwise, the -- eta-reduction check might get tripped up over type variables in a -- synonym that are actually dropped. -- (See GHC Trac #11416 for a scenario where this actually happened.) varTysExp <- mapM expandSyn varTysOrig let remainingLength :: Int remainingLength = length varTysOrig - arityInt jc droppedTysExp :: [Type] droppedTysExp = drop remainingLength varTysExp droppedStarKindStati :: [StarKindStatus] droppedStarKindStati = map canRealizeKindStar droppedTysExp -- Check there are enough types to drop and that all of them are either of -- kind * or kind k (for some kind variable k). If not, throw an error. when (remainingLength < 0 || elem NotKindStar droppedStarKindStati) $ derivingKindError jc tyConName let droppedKindVarNames :: [Name] droppedKindVarNames = catKindVarNames droppedStarKindStati -- Substitute kind * for any dropped kind variables varTysExpSubst :: [Type] varTysExpSubst = map (substNamesWithKindStar droppedKindVarNames) varTysExp remainingTysExpSubst, droppedTysExpSubst :: [Type] (remainingTysExpSubst, droppedTysExpSubst) = splitAt remainingLength varTysExpSubst -- All of the type variables mentioned in the dropped types -- (post-synonym expansion) droppedTyVarNames :: [Name] droppedTyVarNames = concatMap tyVarNamesOfType droppedTysExpSubst -- If any of the dropped types were polykinded, ensure that they are of kind * -- after substituting * for the dropped kind variables. If not, throw an error. unless (all hasKindStar droppedTysExpSubst) $ derivingKindError jc tyConName let preds :: [Maybe Pred] kvNames :: [[Name]] kvNames' :: [Name] -- Derive instance constraints (and any kind variables which are specialized -- to * in those constraints) (preds, kvNames) = unzip $ map (deriveConstraint jc) remainingTysExpSubst kvNames' = concat kvNames -- Substitute the kind variables specialized in the constraints with * remainingTysExpSubst' :: [Type] remainingTysExpSubst' = map (substNamesWithKindStar kvNames') remainingTysExpSubst -- We now substitute all of the specialized-to-* kind variable names with -- *, but in the original types, not the synonym-expanded types. The reason -- we do this is a superficial one: we want the derived instance to resemble -- the datatype written in source code as closely as possible. For example, -- for the following data family instance: -- -- data family Fam a -- newtype instance Fam String = Fam String -- -- We'd want to generate the instance: -- -- instance C (Fam String) -- -- Not: -- -- instance C (Fam [Char]) remainingTysOrigSubst :: [Type] remainingTysOrigSubst = map (substNamesWithKindStar (droppedKindVarNames `union` kvNames')) $ take remainingLength varTysOrig remainingTysOrigSubst' :: [Type] -- See Note [Kind signatures in derived instances] for an explanation -- of the isDataFamily check. remainingTysOrigSubst' = if isDataFamily then remainingTysOrigSubst else map unSigT remainingTysOrigSubst instanceCxt :: Cxt instanceCxt = catMaybes preds instanceType :: Type instanceType = AppT (ConT $ jsonClassName jc) $ applyTyCon tyConName remainingTysOrigSubst' -- If the datatype context mentions any of the dropped type variables, -- we can't derive an instance, so throw an error. when (any (`predMentionsName` droppedTyVarNames) dataCxt) $ datatypeContextError tyConName instanceType -- Also ensure the dropped types can be safely eta-reduced. Otherwise, -- throw an error. unless (canEtaReduce remainingTysExpSubst' droppedTysExpSubst) $ etaReductionError instanceType return (instanceCxt, instanceType) -- | Attempt to derive a constraint on a Type. If successful, return -- Just the constraint and any kind variable names constrained to *. -- Otherwise, return Nothing and the empty list. -- -- See Note [Type inference in derived instances] for the heuristics used to -- come up with constraints. deriveConstraint :: JSONClass -> Type -> (Maybe Pred, [Name]) deriveConstraint jc t | not (isTyVar t) = (Nothing, []) | hasKindStar t = (Just (applyCon (jcConstraint Arity0) tName), []) | otherwise = case hasKindVarChain 1 t of Just ns | jcArity >= Arity1 -> (Just (applyCon (jcConstraint Arity1) tName), ns) _ -> case hasKindVarChain 2 t of Just ns | jcArity == Arity2 -> (Just (applyCon (jcConstraint Arity2) tName), ns) _ -> (Nothing, []) where tName :: Name tName = varTToName t jcArity :: Arity jcArity = arity jc jcConstraint :: Arity -> Name jcConstraint = jsonClassName . JSONClass (direction jc) {- Note [Polykinded data families in Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In order to come up with the correct instance context and head for an instance, e.g., instance C a => C (Data a) where ... We need to know the exact types and kinds used to instantiate the instance. For plain old datatypes, this is simple: every type must be a type variable, and Template Haskell reliably tells us the type variables and their kinds. Doing the same for data families proves to be much harder for three reasons: 1. On any version of Template Haskell, it may not tell you what an instantiated type's kind is. For instance, in the following data family instance: data family Fam (f :: * -> *) (a :: *) data instance Fam f a Then if we use TH's reify function, it would tell us the TyVarBndrs of the data family declaration are: [KindedTV f (AppT (AppT ArrowT StarT) StarT),KindedTV a StarT] and the instantiated types of the data family instance are: [VarT f1,VarT a1] We can't just pass [VarT f1,VarT a1] to buildTypeInstanceFromTys, since we have no way of knowing their kinds. Luckily, the TyVarBndrs tell us what the kind is in case an instantiated type isn't a SigT, so we use the stealKindForType function to ensure all of the instantiated types are SigTs before passing them to buildTypeInstanceFromTys. 2. On GHC 7.6 and 7.8, a bug is present in which Template Haskell lists all of the specified kinds of a data family instance efore any of the instantiated types. Fortunately, this is easy to deal with: you simply count the number of distinct kind variables in the data family declaration, take that many elements from the front of the Types list of the data family instance, substitute the kind variables with their respective instantiated kinds (which you took earlier), and proceed as normal. 3. On GHC 7.8, an even uglier bug is present (GHC Trac #9692) in which Template Haskell might not even list all of the Types of a data family instance, since they are eta-reduced away! And yes, kinds can be eta-reduced too. The simplest workaround is to count how many instantiated types are missing from the list and generate extra type variables to use in their place. Luckily, we needn't worry much if its kind was eta-reduced away, since using stealKindForType will get it back. Note [Kind signatures in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to put explicit kind signatures into the derived instances, e.g., instance C a => C (Data (f :: * -> *)) where ... But it is preferable to avoid this if possible. If we come up with an incorrect kind signature (which is entirely possible, since Template Haskell doesn't always have the best track record with reifying kind signatures), then GHC will flat-out reject the instance, which is quite unfortunate. Plain old datatypes have the advantage that you can avoid using any kind signatures at all in their instances. This is because a datatype declaration uses all type variables, so the types that we use in a derived instance uniquely determine their kinds. As long as we plug in the right types, the kind inferencer can do the rest of the work. For this reason, we use unSigT to remove all kind signatures before splicing in the instance context and head. Data family instances are trickier, since a data family can have two instances that are distinguished by kind alone, e.g., data family Fam (a :: k) data instance Fam (a :: * -> *) data instance Fam (a :: *) If we dropped the kind signatures for C (Fam a), then GHC will have no way of knowing which instance we are talking about. To avoid this scenario, we always include explicit kind signatures in data family instances. There is a chance that the inferred kind signatures will be incorrect, but if so, we can always fall back on the mk- functions. Note [Type inference in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Type inference is can be tricky to get right, and we want to avoid recreating the entirety of GHC's type inferencer in Template Haskell. For this reason, we will probably never come up with derived instance contexts that are as accurate as GHC's. But that doesn't mean we can't do anything! There are a couple of simple things we can do to make instance contexts that work for 80% of use cases: 1. If one of the last type parameters is polykinded, then its kind will be specialized to * in the derived instance. We note what kind variable the type parameter had and substitute it with * in the other types as well. For example, imagine you had data Data (a :: k) (b :: k) Then you'd want to derived instance to be: instance C (Data (a :: *)) Not: instance C (Data (a :: k)) 2. We naïvely come up with instance constraints using the following criteria: (i) If there's a type parameter n of kind *, generate a ToJSON n/FromJSON n constraint. (ii) If there's a type parameter n of kind k1 -> k2 (where k1/k2 are * or kind variables), then generate a ToJSON1 n/FromJSON1 n constraint, and if k1/k2 are kind variables, then substitute k1/k2 with * elsewhere in the types. We must consider the case where they are kind variables because you might have a scenario like this: newtype Compose (f :: k2 -> *) (g :: k1 -> k2) (a :: k1) = Compose (f (g a)) Which would have a derived ToJSON1 instance of: instance (ToJSON1 f, ToJSON1 g) => ToJSON1 (Compose f g) where ... (iii) If there's a type parameter n of kind k1 -> k2 -> k3 (where k1/k2/k3 are * or kind variables), then generate a ToJSON2 n/FromJSON2 n constraint and perform kind substitution as in the other cases. -} -- Determines the types of a constructor's arguments as well as the last type -- parameters (mapped to their encoding/decoding functions), expanding through -- any type synonyms. -- -- The type parameters are determined on a constructor-by-constructor basis since -- they may be refined to be particular types in a GADT. reifyConTys :: JSONClass -> [(Name, Name)] -> Name -> Q ([Type], TyVarMap) reifyConTys jc tpjs conName = do info <- reify conName (ctxt, uncTy) <- case info of DataConI _ ty _ #if !(MIN_VERSION_template_haskell(2,11,0)) _ #endif -> fmap uncurryTy (expandSyn ty) _ -> error "Must be a data constructor" let (argTys, [resTy]) = NE.splitAt (NE.length uncTy - 1) uncTy unapResTy = unapplyTy resTy -- If one of the last type variables is refined to a particular type -- (i.e., not truly polymorphic), we mark it with Nothing and filter -- it out later, since we only apply encoding/decoding functions to -- arguments of a type that it (1) one of the last type variables, -- and (2) of a truly polymorphic type. jArity = arityInt jc mbTvNames = map varTToNameMaybe $ NE.drop (NE.length unapResTy - jArity) unapResTy -- We use M.fromList to ensure that if there are any duplicate type -- variables (as can happen in a GADT), the rightmost type variable gets -- associated with the show function. -- -- See Note [Matching functions with GADT type variables] tvMap = M.fromList . catMaybes -- Drop refined types $ zipWith (\mbTvName tpj -> fmap (\tvName -> (tvName, tpj)) mbTvName) mbTvNames tpjs if (any (`predMentionsName` M.keys tvMap) ctxt || M.size tvMap < jArity) && not (allowExQuant jc) then existentialContextError conName else return (argTys, tvMap) {- Note [Matching functions with GADT type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When deriving ToJSON2, there is a tricky corner case to consider: data Both a b where BothCon :: x -> x -> Both x x Which encoding functions should be applied to which arguments of BothCon? We have a choice, since both the function of type (a -> Value) and of type (b -> Value) can be applied to either argument. In such a scenario, the second encoding function takes precedence over the first encoding function, so the derived ToJSON2 instance would be something like: instance ToJSON2 Both where liftToJSON2 tj1 tj2 p (BothCon x1 x2) = Array $ create $ do mv <- unsafeNew 2 unsafeWrite mv 0 (tj1 x1) unsafeWrite mv 1 (tj2 x2) return mv This is not an arbitrary choice, as this definition ensures that liftToJSON2 toJSON = liftToJSON for a derived ToJSON1 instance for Both. -} -- A mapping of type variable Names to their encoding/decoding function Names. -- For example, in a ToJSON2 declaration, a TyVarMap might look like -- -- { a ~> (tj1, tjl1) -- , b ~> (tj2, tjl2) } -- -- where a and b are the last two type variables of the datatype, tj1 and tjl1 are -- the function arguments of types (a -> Value) and ([a] -> Value), and tj2 and tjl2 -- are the function arguments of types (b -> Value) and ([b] -> Value). type TyVarMap = Map Name (Name, Name) -- | If a VarT is missing an explicit kind signature, steal it from a TyVarBndr. stealKindForType :: TyVarBndr -> Type -> Type stealKindForType tvb t@VarT{} = SigT t (tvbKind tvb) stealKindForType _ t = t -- | Extracts the kind from a type variable binder. tvbKind :: TyVarBndr -> Kind #if MIN_VERSION_template_haskell(2,8,0) tvbKind (PlainTV _ ) = StarT #else tvbKind (PlainTV _ ) = StarK #endif tvbKind (KindedTV _ k) = k tvbToType :: TyVarBndr -> Type tvbToType (PlainTV n) = VarT n tvbToType (KindedTV n k) = SigT (VarT n) k -- | Returns True if a Type has kind *. hasKindStar :: Type -> Bool hasKindStar VarT{} = True #if MIN_VERSION_template_haskell(2,8,0) hasKindStar (SigT _ StarT) = True #else hasKindStar (SigT _ StarK) = True #endif hasKindStar _ = False -- Returns True is a kind is equal to *, or if it is a kind variable. isStarOrVar :: Kind -> Bool #if MIN_VERSION_template_haskell(2,8,0) isStarOrVar StarT = True isStarOrVar VarT{} = True #else isStarOrVar StarK = True #endif isStarOrVar _ = False -- Generate a list of fresh names with a common prefix, and numbered suffixes. newNameList :: String -> Int -> Q [Name] newNameList prefix len = mapM newName [prefix ++ show n | n <- [1..len]] -- Gets all of the type/kind variable names mentioned somewhere in a Type. tyVarNamesOfType :: Type -> [Name] tyVarNamesOfType = go where go :: Type -> [Name] go (AppT t1 t2) = go t1 ++ go t2 go (SigT t _k) = go t #if MIN_VERSION_template_haskell(2,8,0) ++ go _k #endif go (VarT n) = [n] go _ = [] -- | Gets all of the type/kind variable names mentioned somewhere in a Kind. tyVarNamesOfKind :: Kind -> [Name] #if MIN_VERSION_template_haskell(2,8,0) tyVarNamesOfKind = tyVarNamesOfType #else tyVarNamesOfKind _ = [] -- There are no kind variables #endif -- | @hasKindVarChain n kind@ Checks if @kind@ is of the form -- k_0 -> k_1 -> ... -> k_(n-1), where k0, k1, ..., and k_(n-1) can be * or -- kind variables. hasKindVarChain :: Int -> Type -> Maybe [Name] hasKindVarChain kindArrows t = let uk = uncurryKind (tyKind t) in if (NE.length uk - 1 == kindArrows) && F.all isStarOrVar uk then Just (concatMap tyVarNamesOfKind uk) else Nothing -- | If a Type is a SigT, returns its kind signature. Otherwise, return *. tyKind :: Type -> Kind tyKind (SigT _ k) = k tyKind _ = starK -- | Extract Just the Name from a type variable. If the argument Type is not a -- type variable, return Nothing. varTToNameMaybe :: Type -> Maybe Name varTToNameMaybe (VarT n) = Just n varTToNameMaybe (SigT t _) = varTToNameMaybe t varTToNameMaybe _ = Nothing -- | Extract the Name from a type variable. If the argument Type is not a -- type variable, throw an error. varTToName :: Type -> Name varTToName = fromMaybe (error "Not a type variable!") . varTToNameMaybe -- | Extracts the name from a constructor. getConName :: Con -> Name getConName (NormalC name _) = name getConName (RecC name _) = name getConName (InfixC _ name _) = name getConName (ForallC _ _ con) = getConName con #if MIN_VERSION_template_haskell(2,11,0) getConName (GadtC names _ _) = head names getConName (RecGadtC names _ _) = head names #endif interleave :: [a] -> [a] -> [a] interleave (a1:a1s) (a2:a2s) = a1:a2:interleave a1s a2s interleave _ _ = [] -- | Fully applies a type constructor to its type variables. applyTyCon :: Name -> [Type] -> Type applyTyCon = foldl' AppT . ConT -- | Is the given type a variable? isTyVar :: Type -> Bool isTyVar (VarT _) = True isTyVar (SigT t _) = isTyVar t isTyVar _ = False -- | Is the given type a type family constructor (and not a data family constructor)? isTyFamily :: Type -> Q Bool isTyFamily (ConT n) = do info <- reify n return $ case info of #if MIN_VERSION_template_haskell(2,11,0) FamilyI OpenTypeFamilyD{} _ -> True #else FamilyI (FamilyD TypeFam _ _ _) _ -> True #endif #if MIN_VERSION_template_haskell(2,9,0) FamilyI ClosedTypeFamilyD{} _ -> True #endif _ -> False isTyFamily _ = return False -- | Peel off a kind signature from a Type (if it has one). unSigT :: Type -> Type unSigT (SigT t _) = t unSigT t = t -- | Are all of the items in a list (which have an ordering) distinct? -- -- This uses Set (as opposed to nub) for better asymptotic time complexity. allDistinct :: Ord a => [a] -> Bool allDistinct = allDistinct' Set.empty where allDistinct' :: Ord a => Set a -> [a] -> Bool allDistinct' uniqs (x:xs) | x `Set.member` uniqs = False | otherwise = allDistinct' (Set.insert x uniqs) xs allDistinct' _ _ = True -- | Does the given type mention any of the Names in the list? mentionsName :: Type -> [Name] -> Bool mentionsName = go where go :: Type -> [Name] -> Bool go (AppT t1 t2) names = go t1 names || go t2 names go (SigT t _k) names = go t names #if MIN_VERSION_template_haskell(2,8,0) || go _k names #endif go (VarT n) names = n `elem` names go _ _ = False -- | Does an instance predicate mention any of the Names in the list? predMentionsName :: Pred -> [Name] -> Bool #if MIN_VERSION_template_haskell(2,10,0) predMentionsName = mentionsName #else predMentionsName (ClassP n tys) names = n `elem` names || any (`mentionsName` names) tys predMentionsName (EqualP t1 t2) names = mentionsName t1 names || mentionsName t2 names #endif -- | Split an applied type into its individual components. For example, this: -- -- @ -- Either Int Char -- @ -- -- would split to this: -- -- @ -- [Either, Int, Char] -- @ unapplyTy :: Type -> NonEmpty Type unapplyTy = NE.reverse . go where go :: Type -> NonEmpty Type go (AppT t1 t2) = t2 <| go t1 go (SigT t _) = go t go (ForallT _ _ t) = go t go t = t :| [] -- | Split a type signature by the arrows on its spine. For example, this: -- -- @ -- forall a b. (a ~ b) => (a -> b) -> Char -> () -- @ -- -- would split to this: -- -- @ -- (a ~ b, [a -> b, Char, ()]) -- @ uncurryTy :: Type -> (Cxt, NonEmpty Type) uncurryTy (AppT (AppT ArrowT t1) t2) = let (ctxt, tys) = uncurryTy t2 in (ctxt, t1 <| tys) uncurryTy (SigT t _) = uncurryTy t uncurryTy (ForallT _ ctxt t) = let (ctxt', tys) = uncurryTy t in (ctxt ++ ctxt', tys) uncurryTy t = ([], t :| []) -- | Like uncurryType, except on a kind level. uncurryKind :: Kind -> NonEmpty Kind #if MIN_VERSION_template_haskell(2,8,0) uncurryKind = snd . uncurryTy #else uncurryKind (ArrowK k1 k2) = k1 <| uncurryKind k2 uncurryKind k = k :| [] #endif createKindChain :: Int -> Kind createKindChain = go starK where go :: Kind -> Int -> Kind go k 0 = k #if MIN_VERSION_template_haskell(2,8,0) go k !n = go (AppT (AppT ArrowT StarT) k) (n - 1) #else go k !n = go (ArrowK StarK k) (n - 1) #endif -- | Makes a string literal expression from a constructor's name. conNameExp :: Options -> Con -> Q Exp conNameExp opts = litE . stringL . constructorTagModifier opts . nameBase . getConName -- | Creates a string literal expression from a record field label. fieldLabelExp :: Options -- ^ Encoding options -> Name -> Q Exp fieldLabelExp opts = litE . stringL . fieldLabelModifier opts . nameBase -- | The name of the outermost 'Value' constructor. valueConName :: Value -> String valueConName (Object _) = "Object" valueConName (Array _) = "Array" valueConName (String _) = "String" valueConName (Number _) = "Number" valueConName (Bool _) = "Boolean" valueConName Null = "Null" applyCon :: Name -> Name -> Pred applyCon con t = #if MIN_VERSION_template_haskell(2,10,0) AppT (ConT con) (VarT t) #else ClassP con [VarT t] #endif -- | Checks to see if the last types in a data family instance can be safely eta- -- reduced (i.e., dropped), given the other types. This checks for three conditions: -- -- (1) All of the dropped types are type variables -- (2) All of the dropped types are distinct -- (3) None of the remaining types mention any of the dropped types canEtaReduce :: [Type] -> [Type] -> Bool canEtaReduce remaining dropped = all isTyVar dropped && allDistinct droppedNames -- Make sure not to pass something of type [Type], since Type -- didn't have an Ord instance until template-haskell-2.10.0.0 && not (any (`mentionsName` droppedNames) remaining) where droppedNames :: [Name] droppedNames = map varTToName dropped ------------------------------------------------------------------------------- -- Expanding type synonyms ------------------------------------------------------------------------------- -- | Expands all type synonyms in a type. Written by Dan Rosén in the -- @genifunctors@ package (licensed under BSD3). expandSyn :: Type -> Q Type expandSyn (ForallT tvs ctx t) = ForallT tvs ctx <$> expandSyn t expandSyn t@AppT{} = expandSynApp t [] expandSyn t@ConT{} = expandSynApp t [] expandSyn (SigT t k) = do t' <- expandSyn t k' <- expandSynKind k return (SigT t' k') expandSyn t = return t expandSynKind :: Kind -> Q Kind #if MIN_VERSION_template_haskell(2,8,0) expandSynKind = expandSyn #else expandSynKind = return -- There are no kind synonyms to deal with #endif expandSynApp :: Type -> [Type] -> Q Type expandSynApp (AppT t1 t2) ts = do t2' <- expandSyn t2 expandSynApp t1 (t2':ts) expandSynApp (ConT n) ts | nameBase n == "[]" = return $ foldl' AppT ListT ts expandSynApp t@(ConT n) ts = do info <- reify n case info of TyConI (TySynD _ tvs rhs) -> let (ts', ts'') = splitAt (length tvs) ts subs = mkSubst tvs ts' rhs' = substType subs rhs in expandSynApp rhs' ts'' _ -> return $ foldl' AppT t ts expandSynApp t ts = do t' <- expandSyn t return $ foldl' AppT t' ts type TypeSubst = Map Name Type type KindSubst = Map Name Kind mkSubst :: [TyVarBndr] -> [Type] -> TypeSubst mkSubst vs ts = let vs' = map un vs un (PlainTV v) = v un (KindedTV v _) = v in M.fromList $ zip vs' ts substType :: TypeSubst -> Type -> Type substType subs (ForallT v c t) = ForallT v c $ substType subs t substType subs t@(VarT n) = M.findWithDefault t n subs substType subs (AppT t1 t2) = AppT (substType subs t1) (substType subs t2) substType subs (SigT t k) = SigT (substType subs t) #if MIN_VERSION_template_haskell(2,8,0) (substType subs k) #else k #endif substType _ t = t substKind :: KindSubst -> Type -> Type #if MIN_VERSION_template_haskell(2,8,0) substKind = substType #else substKind _ t = t -- There are no kind variables! #endif substNameWithKind :: Name -> Kind -> Type -> Type substNameWithKind n k = substKind (M.singleton n k) substNamesWithKindStar :: [Name] -> Type -> Type substNamesWithKindStar ns t = foldr' (`substNameWithKind` starK) t ns ------------------------------------------------------------------------------- -- Error messages ------------------------------------------------------------------------------- -- | Either the given data type doesn't have enough type variables, or one of -- the type variables to be eta-reduced cannot realize kind *. derivingKindError :: JSONClass -> Name -> Q a derivingKindError jc tyConName = fail . showString "Cannot derive well-kinded instance of form ‘" . showString className . showChar ' ' . showParen True ( showString (nameBase tyConName) . showString " ..." ) . showString "‘\n\tClass " . showString className . showString " expects an argument of kind " . showString (pprint . createKindChain $ arityInt jc) $ "" where className :: String className = nameBase $ jsonClassName jc -- | One of the last type variables cannot be eta-reduced (see the canEtaReduce -- function for the criteria it would have to meet). etaReductionError :: Type -> Q a etaReductionError instanceType = fail $ "Cannot eta-reduce to an instance of form \n\tinstance (...) => " ++ pprint instanceType -- | The data type has a DatatypeContext which mentions one of the eta-reduced -- type variables. datatypeContextError :: Name -> Type -> Q a datatypeContextError dataName instanceType = fail . showString "Can't make a derived instance of ‘" . showString (pprint instanceType) . showString "‘:\n\tData type ‘" . showString (nameBase dataName) . showString "‘ must not have a class context involving the last type argument(s)" $ "" -- | The data type mentions one of the n eta-reduced type variables in a place other -- than the last nth positions of a data type in a constructor's field. outOfPlaceTyVarError :: JSONClass -> Name -> a outOfPlaceTyVarError jc conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must only use its last " . shows n . showString " type variable(s) within the last " . shows n . showString " argument(s) of a data type" $ "" where n :: Int n = arityInt jc -- | The data type has an existential constraint which mentions one of the -- eta-reduced type variables. existentialContextError :: Name -> a existentialContextError conName = error . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must be truly polymorphic in the last argument(s) of the data type" $ "" ------------------------------------------------------------------------------- -- Class-specific constants ------------------------------------------------------------------------------- -- | A representation of the arity of the ToJSON/FromJSON typeclass being derived. data Arity = Arity0 | Arity1 | Arity2 deriving (Enum, Eq, Ord) -- | Whether ToJSON(1)(2) or FromJSON(1)(2) is being derived. data Direction = To | From -- | A representation of which typeclass method is being spliced in. data JSONFun = ToJSON | ToEncoding | ParseJSON -- | A representation of which typeclass is being derived. data JSONClass = JSONClass { direction :: Direction, arity :: Arity } toJSONClass, toJSON1Class, toJSON2Class, fromJSONClass, fromJSON1Class, fromJSON2Class :: JSONClass toJSONClass = JSONClass To Arity0 toJSON1Class = JSONClass To Arity1 toJSON2Class = JSONClass To Arity2 fromJSONClass = JSONClass From Arity0 fromJSON1Class = JSONClass From Arity1 fromJSON2Class = JSONClass From Arity2 jsonClassName :: JSONClass -> Name jsonClassName (JSONClass To Arity0) = ''ToJSON jsonClassName (JSONClass To Arity1) = ''ToJSON1 jsonClassName (JSONClass To Arity2) = ''ToJSON2 jsonClassName (JSONClass From Arity0) = ''FromJSON jsonClassName (JSONClass From Arity1) = ''FromJSON1 jsonClassName (JSONClass From Arity2) = ''FromJSON2 jsonFunValName :: JSONFun -> Arity -> Name jsonFunValName ToJSON Arity0 = 'toJSON jsonFunValName ToJSON Arity1 = 'liftToJSON jsonFunValName ToJSON Arity2 = 'liftToJSON2 jsonFunValName ToEncoding Arity0 = 'toEncoding jsonFunValName ToEncoding Arity1 = 'liftToEncoding jsonFunValName ToEncoding Arity2 = 'liftToEncoding2 jsonFunValName ParseJSON Arity0 = 'parseJSON jsonFunValName ParseJSON Arity1 = 'liftParseJSON jsonFunValName ParseJSON Arity2 = 'liftParseJSON2 jsonFunListName :: JSONFun -> Arity -> Name jsonFunListName ToJSON Arity0 = 'toJSONList jsonFunListName ToJSON Arity1 = 'liftToJSONList jsonFunListName ToJSON Arity2 = 'liftToJSONList2 jsonFunListName ToEncoding Arity0 = 'toEncodingList jsonFunListName ToEncoding Arity1 = 'liftToEncodingList jsonFunListName ToEncoding Arity2 = 'liftToEncodingList2 jsonFunListName ParseJSON Arity0 = 'parseJSONList jsonFunListName ParseJSON Arity1 = 'liftParseJSONList jsonFunListName ParseJSON Arity2 = 'liftParseJSONList2 jsonFunValOrListName :: Bool -- e.g., toJSONList if True, toJSON if False -> JSONFun -> Arity -> Name jsonFunValOrListName False = jsonFunValName jsonFunValOrListName True = jsonFunListName arityInt :: JSONClass -> Int arityInt = fromEnum . arity allowExQuant :: JSONClass -> Bool allowExQuant (JSONClass To _) = True allowExQuant _ = False ------------------------------------------------------------------------------- -- StarKindStatus ------------------------------------------------------------------------------- -- | Whether a type is not of kind *, is of kind *, or is a kind variable. data StarKindStatus = NotKindStar | KindStar | IsKindVar Name deriving Eq -- | Does a Type have kind * or k (for some kind variable k)? canRealizeKindStar :: Type -> StarKindStatus canRealizeKindStar t = case t of _ | hasKindStar t -> KindStar #if MIN_VERSION_template_haskell(2,8,0) SigT _ (VarT k) -> IsKindVar k #endif _ -> NotKindStar -- | Returns 'Just' the kind variable 'Name' of a 'StarKindStatus' if it exists. -- Otherwise, returns 'Nothing'. starKindStatusToName :: StarKindStatus -> Maybe Name starKindStatusToName (IsKindVar n) = Just n starKindStatusToName _ = Nothing -- | Concat together all of the StarKindStatuses that are IsKindVar and extract -- the kind variables' Names out. catKindVarNames :: [StarKindStatus] -> [Name] catKindVarNames = mapMaybe starKindStatusToName