module Simulation.Aivika.Stream
(
Stream(..),
emptyStream,
mergeStreams,
mergeQueuedStreams,
mergePriorityStreams,
concatStreams,
concatQueuedStreams,
concatPriorityStreams,
splitStream,
splitStreamQueuing,
splitStreamQueueing,
splitStreamPrioritising,
streamUsingId,
prefetchStream,
arrivalStream,
memoStream,
zipStreamSeq,
zipStreamParallel,
zip3StreamSeq,
zip3StreamParallel,
unzipStream,
streamSeq,
streamParallel,
consumeStream,
sinkStream,
repeatProcess,
mapStream,
mapStreamM,
apStreamDataFirst,
apStreamDataLater,
apStreamParallel,
filterStream,
filterStreamM,
signalStream,
streamSignal,
leftStream,
rightStream,
replaceLeftStream,
replaceRightStream,
partitionEitherStream) where
import Data.IORef
import Data.Maybe
import Data.Monoid
import Control.Monad
import Control.Monad.Trans
import Simulation.Aivika.Simulation
import Simulation.Aivika.Dynamics
import Simulation.Aivika.Event
import Simulation.Aivika.Cont
import Simulation.Aivika.Process
import Simulation.Aivika.Signal
import Simulation.Aivika.Resource
import Simulation.Aivika.QueueStrategy
import Simulation.Aivika.Queue.Infinite
import Simulation.Aivika.Internal.Arrival
newtype Stream a = Cons { runStream :: Process (a, Stream a)
}
instance Functor Stream where
fmap f (Cons s) = Cons y where
y = do ~(x, xs) <- s
return (f x, fmap f xs)
instance Monoid (Stream a) where
mempty = emptyStream
mappend = mergeStreams
mconcat = concatStreams
streamUsingId :: ProcessId -> Stream a -> Stream a
streamUsingId pid (Cons s) =
Cons $ processUsingId pid s
memoStream :: Stream a -> Simulation (Stream a)
memoStream (Cons s) =
do p <- memoProcess $
do ~(x, xs) <- s
xs' <- liftSimulation $ memoStream xs
return (x, xs')
return (Cons p)
zipStreamSeq :: Stream a -> Stream b -> Stream (a, b)
zipStreamSeq (Cons sa) (Cons sb) = Cons y where
y = do ~(x, xs) <- sa
~(y, ys) <- sb
return ((x, y), zipStreamSeq xs ys)
zipStreamParallel :: Stream a -> Stream b -> Stream (a, b)
zipStreamParallel (Cons sa) (Cons sb) = Cons y where
y = do ~((x, xs), (y, ys)) <- zipProcessParallel sa sb
return ((x, y), zipStreamParallel xs ys)
zip3StreamSeq :: Stream a -> Stream b -> Stream c -> Stream (a, b, c)
zip3StreamSeq (Cons sa) (Cons sb) (Cons sc) = Cons y where
y = do ~(x, xs) <- sa
~(y, ys) <- sb
~(z, zs) <- sc
return ((x, y, z), zip3StreamSeq xs ys zs)
zip3StreamParallel :: Stream a -> Stream b -> Stream c -> Stream (a, b, c)
zip3StreamParallel (Cons sa) (Cons sb) (Cons sc) = Cons y where
y = do ~((x, xs), (y, ys), (z, zs)) <- zip3ProcessParallel sa sb sc
return ((x, y, z), zip3StreamParallel xs ys zs)
unzipStream :: Stream (a, b) -> Simulation (Stream a, Stream b)
unzipStream s =
do s' <- memoStream s
let sa = mapStream fst s'
sb = mapStream snd s'
return (sa, sb)
streamSeq :: [Stream a] -> Stream [a]
streamSeq xs = Cons y where
y = do ps <- forM xs runStream
return (map fst ps, streamSeq $ map snd ps)
streamParallel :: [Stream a] -> Stream [a]
streamParallel xs = Cons y where
y = do ps <- processParallel $ map runStream xs
return (map fst ps, streamParallel $ map snd ps)
repeatProcess :: Process a -> Stream a
repeatProcess p = Cons y where
y = do a <- p
return (a, repeatProcess p)
mapStream :: (a -> b) -> Stream a -> Stream b
mapStream = fmap
mapStreamM :: (a -> Process b) -> Stream a -> Stream b
mapStreamM f (Cons s) = Cons y where
y = do (a, xs) <- s
b <- f a
return (b, mapStreamM f xs)
apStreamDataFirst :: Process (a -> b) -> Stream a -> Stream b
apStreamDataFirst f (Cons s) = Cons y where
y = do ~(a, xs) <- s
g <- f
return (g a, apStreamDataFirst f xs)
apStreamDataLater :: Process (a -> b) -> Stream a -> Stream b
apStreamDataLater f (Cons s) = Cons y where
y = do g <- f
~(a, xs) <- s
return (g a, apStreamDataLater f xs)
apStreamParallel :: Process (a -> b) -> Stream a -> Stream b
apStreamParallel f (Cons s) = Cons y where
y = do ~(g, (a, xs)) <- zipProcessParallel f s
return (g a, apStreamParallel f xs)
filterStream :: (a -> Bool) -> Stream a -> Stream a
filterStream p (Cons s) = Cons y where
y = do (a, xs) <- s
if p a
then return (a, filterStream p xs)
else let Cons z = filterStream p xs in z
filterStreamM :: (a -> Process Bool) -> Stream a -> Stream a
filterStreamM p (Cons s) = Cons y where
y = do (a, xs) <- s
b <- p a
if b
then return (a, filterStreamM p xs)
else let Cons z = filterStreamM p xs in z
leftStream :: Stream (Either a b) -> Stream a
leftStream (Cons s) = Cons y where
y = do (a, xs) <- s
case a of
Left a -> return (a, leftStream xs)
Right _ -> let Cons z = leftStream xs in z
rightStream :: Stream (Either a b) -> Stream b
rightStream (Cons s) = Cons y where
y = do (a, xs) <- s
case a of
Left _ -> let Cons z = rightStream xs in z
Right a -> return (a, rightStream xs)
replaceLeftStream :: Stream (Either a b) -> Stream c -> Stream (Either c b)
replaceLeftStream (Cons sab) (ys0 @ ~(Cons sc)) = Cons z where
z = do (a, xs) <- sab
case a of
Left _ ->
do (b, ys) <- sc
return (Left b, replaceLeftStream xs ys)
Right a ->
return (Right a, replaceLeftStream xs ys0)
replaceRightStream :: Stream (Either a b) -> Stream c -> Stream (Either a c)
replaceRightStream (Cons sab) (ys0 @ ~(Cons sc)) = Cons z where
z = do (a, xs) <- sab
case a of
Right _ ->
do (b, ys) <- sc
return (Right b, replaceRightStream xs ys)
Left a ->
return (Left a, replaceRightStream xs ys0)
partitionEitherStream :: Stream (Either a b) -> Simulation (Stream a, Stream b)
partitionEitherStream s =
do s' <- memoStream s
return (leftStream s', rightStream s')
splitStream :: Int -> Stream a -> Simulation [Stream a]
splitStream = splitStreamQueueing FCFS
splitStreamQueueing :: EnqueueStrategy s q
=> s
-> Int
-> Stream a
-> Simulation [Stream a]
splitStreamQueueing s n x =
do ref <- liftIO $ newIORef x
res <- newResource s 1
let reader =
usingResource res $
do p <- liftIO $ readIORef ref
(a, xs) <- runStream p
liftIO $ writeIORef ref xs
return a
return $ map (\i -> repeatProcess reader) [1..n]
splitStreamQueuing :: EnqueueStrategy s q
=> s
-> Int
-> Stream a
-> Simulation [Stream a]
splitStreamQueuing = splitStreamQueueing
splitStreamPrioritising :: PriorityQueueStrategy s q p
=> s
-> [Stream p]
-> Stream a
-> Simulation [Stream a]
splitStreamPrioritising s ps x =
do ref <- liftIO $ newIORef x
res <- newResource s 1
let stream (Cons p) = Cons z where
z = do (p', ps) <- p
a <- usingResourceWithPriority res p' $
do p <- liftIO $ readIORef ref
(a, xs) <- runStream p
liftIO $ writeIORef ref xs
return a
return (a, stream ps)
return $ map stream ps
concatStreams :: [Stream a] -> Stream a
concatStreams = concatQueuedStreams FCFS
concatQueuedStreams :: EnqueueStrategy s q
=> s
-> [Stream a]
-> Stream a
concatQueuedStreams s streams = Cons z where
z = do reading <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
writing <- liftSimulation $ newResourceWithMaxCount s 1 (Just 1)
conting <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
ref <- liftIO $ newIORef Nothing
let writer p =
do (a, xs) <- runStream p
requestResource writing
liftIO $ writeIORef ref (Just a)
releaseResource reading
requestResource conting
writer xs
reader =
do requestResource reading
Just a <- liftIO $ readIORef ref
liftIO $ writeIORef ref Nothing
releaseResource writing
return a
forM_ streams $ spawnProcess CancelTogether . writer
a <- reader
let xs = repeatProcess (releaseResource conting >> reader)
return (a, xs)
concatPriorityStreams :: PriorityQueueStrategy s q p
=> s
-> [Stream (p, a)]
-> Stream a
concatPriorityStreams s streams = Cons z where
z = do reading <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
writing <- liftSimulation $ newResourceWithMaxCount s 1 (Just 1)
conting <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
ref <- liftIO $ newIORef Nothing
let writer p =
do ((priority, a), xs) <- runStream p
requestResourceWithPriority writing priority
liftIO $ writeIORef ref (Just a)
releaseResource reading
requestResource conting
writer xs
reader =
do requestResource reading
Just a <- liftIO $ readIORef ref
liftIO $ writeIORef ref Nothing
releaseResource writing
return a
forM_ streams $ spawnProcess CancelTogether . writer
a <- reader
let xs = repeatProcess (releaseResource conting >> reader)
return (a, xs)
mergeStreams :: Stream a -> Stream a -> Stream a
mergeStreams = mergeQueuedStreams FCFS
mergeQueuedStreams :: EnqueueStrategy s q
=> s
-> Stream a
-> Stream a
-> Stream a
mergeQueuedStreams s x y = concatQueuedStreams s [x, y]
mergePriorityStreams :: PriorityQueueStrategy s q p
=> s
-> Stream (p, a)
-> Stream (p, a)
-> Stream a
mergePriorityStreams s x y = concatPriorityStreams s [x, y]
emptyStream :: Stream a
emptyStream = Cons neverProcess
consumeStream :: (a -> Process ()) -> Stream a -> Process ()
consumeStream f = p where
p (Cons s) = do (a, xs) <- s
f a
p xs
sinkStream :: Stream a -> Process ()
sinkStream = p where
p (Cons s) = do (a, xs) <- s
p xs
prefetchStream :: Stream a -> Stream a
prefetchStream s = Cons z where
z = do reading <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
writing <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1)
ref <- liftIO $ newIORef Nothing
let writer p =
do (a, xs) <- runStream p
requestResource writing
liftIO $ writeIORef ref (Just a)
releaseResource reading
writer xs
reader =
do requestResource reading
Just a <- liftIO $ readIORef ref
liftIO $ writeIORef ref Nothing
releaseResource writing
return a
spawnProcess CancelTogether $ writer s
runStream $ repeatProcess reader
signalStream :: Signal a -> Process (Stream a)
signalStream s =
do q <- liftSimulation newFCFSQueue
h <- liftEvent $
handleSignal s $
enqueue q
whenCancellingProcess h
return $ repeatProcess $ dequeue q
streamSignal :: Stream a -> Process (Signal a)
streamSignal z =
do s <- liftSimulation newSignalSource
spawnProcess CancelTogether $
consumeStream (liftEvent . triggerSignal s) z
return $ publishSignal s
arrivalStream :: Stream a -> Stream (Arrival a)
arrivalStream s = Cons z where
z = do t <- liftDynamics time
loop s t
loop s t0 = do (a, xs) <- runStream s
t <- liftDynamics time
let b = Arrival { arrivalValue = a,
arrivalTime = t,
arrivalDelay = t t0 }
return (b, Cons $ loop xs t)