module Simulation.Aivika.Internal.Dynamics
(
Dynamics(..),
DynamicsLift(..),
invokeDynamics,
runDynamicsInStartTime,
runDynamicsInStopTime,
runDynamicsInIntegTimes,
runDynamicsInTime,
runDynamicsInTimes,
catchDynamics,
finallyDynamics,
throwDynamics,
time,
isTimeInteg,
integIteration,
integPhase) where
import Control.Exception
import Control.Monad
import Control.Monad.Trans
import Control.Monad.Fix
import Control.Applicative
import Simulation.Aivika.Internal.Specs
import Simulation.Aivika.Internal.Parameter
import Simulation.Aivika.Internal.Simulation
newtype Dynamics a = Dynamics (Point -> IO a)
instance Monad Dynamics where
return = returnD
m >>= k = bindD m k
returnD :: a -> Dynamics a
returnD a = Dynamics (\p -> return a)
bindD :: Dynamics a -> (a -> Dynamics b) -> Dynamics b
bindD (Dynamics m) k =
Dynamics $ \p ->
do a <- m p
let Dynamics m' = k a
m' p
runDynamicsInStartTime :: Dynamics a -> Simulation a
runDynamicsInStartTime (Dynamics m) =
Simulation $ m . integStartPoint
runDynamicsInStopTime :: Dynamics a -> Simulation a
runDynamicsInStopTime (Dynamics m) =
Simulation $ m . integStopPoint
runDynamicsInIntegTimes :: Dynamics a -> Simulation [IO a]
runDynamicsInIntegTimes (Dynamics m) =
Simulation $ return . map m . integPoints
runDynamicsInTime :: Double -> Dynamics a -> Simulation a
runDynamicsInTime t (Dynamics m) =
Simulation $ \r -> m $ pointAt r t
runDynamicsInTimes :: [Double] -> Dynamics a -> Simulation [IO a]
runDynamicsInTimes ts (Dynamics m) =
Simulation $ \r -> return $ map (m . pointAt r) ts
instance Functor Dynamics where
fmap = liftMD
instance Applicative Dynamics where
pure = return
(<*>) = ap
instance Eq (Dynamics a) where
x == y = error "Can't compare dynamics."
instance Show (Dynamics a) where
showsPrec _ x = showString "<< Dynamics >>"
liftMD :: (a -> b) -> Dynamics a -> Dynamics b
liftMD f (Dynamics x) =
Dynamics $ \p -> do { a <- x p; return $ f a }
liftM2D :: (a -> b -> c) -> Dynamics a -> Dynamics b -> Dynamics c
liftM2D f (Dynamics x) (Dynamics y) =
Dynamics $ \p -> do { a <- x p; b <- y p; return $ f a b }
instance (Num a) => Num (Dynamics a) where
x + y = liftM2D (+) x y
x y = liftM2D () x y
x * y = liftM2D (*) x y
negate = liftMD negate
abs = liftMD abs
signum = liftMD signum
fromInteger i = return $ fromInteger i
instance (Fractional a) => Fractional (Dynamics a) where
x / y = liftM2D (/) x y
recip = liftMD recip
fromRational t = return $ fromRational t
instance (Floating a) => Floating (Dynamics a) where
pi = return pi
exp = liftMD exp
log = liftMD log
sqrt = liftMD sqrt
x ** y = liftM2D (**) x y
sin = liftMD sin
cos = liftMD cos
tan = liftMD tan
asin = liftMD asin
acos = liftMD acos
atan = liftMD atan
sinh = liftMD sinh
cosh = liftMD cosh
tanh = liftMD tanh
asinh = liftMD asinh
acosh = liftMD acosh
atanh = liftMD atanh
instance MonadIO Dynamics where
liftIO m = Dynamics $ const m
instance ParameterLift Dynamics where
liftParameter = liftDP
instance SimulationLift Dynamics where
liftSimulation = liftDS
liftDP :: Parameter a -> Dynamics a
liftDP (Parameter m) =
Dynamics $ \p -> m $ pointRun p
liftDS :: Simulation a -> Dynamics a
liftDS (Simulation m) =
Dynamics $ \p -> m $ pointRun p
class DynamicsLift m where
liftDynamics :: Dynamics a -> m a
instance DynamicsLift Dynamics where
liftDynamics = id
catchDynamics :: Exception e => Dynamics a -> (e -> Dynamics a) -> Dynamics a
catchDynamics (Dynamics m) h =
Dynamics $ \p ->
catch (m p) $ \e ->
let Dynamics m' = h e in m' p
finallyDynamics :: Dynamics a -> Dynamics b -> Dynamics a
finallyDynamics (Dynamics m) (Dynamics m') =
Dynamics $ \p ->
finally (m p) (m' p)
throwDynamics :: Exception e => e -> Dynamics a
throwDynamics = throw
invokeDynamics :: Point -> Dynamics a -> IO a
invokeDynamics p (Dynamics m) = m p
instance MonadFix Dynamics where
mfix f =
Dynamics $ \p ->
do { rec { a <- invokeDynamics p (f a) }; return a }
time :: Dynamics Double
time = Dynamics $ return . pointTime
isTimeInteg :: Dynamics Bool
isTimeInteg = Dynamics $ \p -> return $ pointPhase p >= 0
integIteration :: Dynamics Int
integIteration = Dynamics $ return . pointIteration
integPhase :: Dynamics Int
integPhase = Dynamics $ return . pointPhase