-- | -- Module : Simulation.Aivika.Net.Random -- Copyright : Copyright (c) 2009-2015, David Sorokin <david.sorokin@gmail.com> -- License : BSD3 -- Maintainer : David Sorokin <david.sorokin@gmail.com> -- Stability : experimental -- Tested with: GHC 7.10.1 -- -- This module defines some useful random network computations that -- hold the current process for the corresponding time interval, -- when processing every input element. -- module Simulation.Aivika.Net.Random (randomUniformNet, randomUniformIntNet, randomNormalNet, randomExponentialNet, randomErlangNet, randomPoissonNet, randomBinomialNet) where import Simulation.Aivika.Process import Simulation.Aivika.Process.Random import Simulation.Aivika.Net -- | When processing every input element, hold the process -- for a random time interval distributed uniformly. randomUniformNet :: Double -- ^ the minimum time interval -> Double -- ^ the maximum time interval -> Net a a randomUniformNet min max = withinNet $ randomUniformProcess_ min max -- | When processing every input element, hold the process -- for a random time interval distributed uniformly. randomUniformIntNet :: Int -- ^ the minimum time interval -> Int -- ^ the maximum time interval -> Net a a randomUniformIntNet min max = withinNet $ randomUniformIntProcess_ min max -- | When processing every input element, hold the process -- for a random time interval distributed normally. randomNormalNet :: Double -- ^ the mean time interval -> Double -- ^ the time interval deviation -> Net a a randomNormalNet mu nu = withinNet $ randomNormalProcess_ mu nu -- | When processing every input element, hold the process -- for a random time interval distributed exponentially -- with the specified mean (the reciprocal of the rate). randomExponentialNet :: Double -- ^ the mean time interval (the reciprocal of the rate) -> Net a a randomExponentialNet mu = withinNet $ randomExponentialProcess_ mu -- | When processing every input element, hold the process -- for a random time interval having the Erlang distribution with -- the specified scale (the reciprocal of the rate) and shape parameters. randomErlangNet :: Double -- ^ the scale (the reciprocal of the rate) -> Int -- ^ the shape -> Net a a randomErlangNet beta m = withinNet $ randomErlangProcess_ beta m -- | When processing every input element, hold the process -- for a random time interval having the Poisson distribution -- with the specified mean. randomPoissonNet :: Double -- ^ the mean time interval -> Net a a randomPoissonNet mu = withinNet $ randomPoissonProcess_ mu -- | When processing every input element, hold the process -- for a random time interval having the binomial distribution -- with the specified probability and trials. randomBinomialNet :: Double -- ^ the probability -> Int -- ^ the number of trials -> Net a a randomBinomialNet prob trials = withinNet $ randomBinomialProcess_ prob trials