-- | -- Module : Simulation.Aivika.Net.Random -- Copyright : Copyright (c) 2009-2015, David Sorokin <david.sorokin@gmail.com> -- License : BSD3 -- Maintainer : David Sorokin <david.sorokin@gmail.com> -- Stability : experimental -- Tested with: GHC 7.10.1 -- -- This module defines some useful random network computations that -- hold the current process for the corresponding time interval, -- when processing every input element. -- module Simulation.Aivika.Net.Random (randomUniformNet, randomUniformIntNet, randomTriangularNet, randomNormalNet, randomLogNormalNet, randomExponentialNet, randomErlangNet, randomPoissonNet, randomBinomialNet, randomGammaNet, randomBetaNet, randomWeibullNet, randomDiscreteNet) where import Simulation.Aivika.Generator import Simulation.Aivika.Process import Simulation.Aivika.Process.Random import Simulation.Aivika.Net -- | When processing every input element, hold the process -- for a random time interval distributed uniformly. randomUniformNet :: Double -- ^ the minimum time interval -> Double -- ^ the maximum time interval -> Net a a randomUniformNet min max = withinNet $ randomUniformProcess_ min max -- | When processing every input element, hold the process -- for a random time interval distributed uniformly. randomUniformIntNet :: Int -- ^ the minimum time interval -> Int -- ^ the maximum time interval -> Net a a randomUniformIntNet min max = withinNet $ randomUniformIntProcess_ min max -- | When processing every input element, hold the process -- for a random time interval having the triangular distribution. randomTriangularNet :: Double -- ^ the minimum time interval -> Double -- ^ the median of the time interval -> Double -- ^ the maximum time interval -> Net a a randomTriangularNet min median max = withinNet $ randomTriangularProcess_ min median max -- | When processing every input element, hold the process -- for a random time interval distributed normally. randomNormalNet :: Double -- ^ the mean time interval -> Double -- ^ the time interval deviation -> Net a a randomNormalNet mu nu = withinNet $ randomNormalProcess_ mu nu -- | When processing every input element, hold the process -- for a random time interval having the lognormal distribution. randomLogNormalNet :: Double -- ^ the mean of a normal distribution which -- this distribution is derived from -> Double -- ^ the deviation of a normal distribution which -- this distribution is derived from -> Net a a randomLogNormalNet mu nu = withinNet $ randomLogNormalProcess_ mu nu -- | When processing every input element, hold the process -- for a random time interval distributed exponentially -- with the specified mean (the reciprocal of the rate). randomExponentialNet :: Double -- ^ the mean time interval (the reciprocal of the rate) -> Net a a randomExponentialNet mu = withinNet $ randomExponentialProcess_ mu -- | When processing every input element, hold the process -- for a random time interval having the Erlang distribution with -- the specified scale (the reciprocal of the rate) and shape parameters. randomErlangNet :: Double -- ^ the scale (the reciprocal of the rate) -> Int -- ^ the shape -> Net a a randomErlangNet beta m = withinNet $ randomErlangProcess_ beta m -- | When processing every input element, hold the process -- for a random time interval having the Poisson distribution -- with the specified mean. randomPoissonNet :: Double -- ^ the mean time interval -> Net a a randomPoissonNet mu = withinNet $ randomPoissonProcess_ mu -- | When processing every input element, hold the process -- for a random time interval having the binomial distribution -- with the specified probability and trials. randomBinomialNet :: Double -- ^ the probability -> Int -- ^ the number of trials -> Net a a randomBinomialNet prob trials = withinNet $ randomBinomialProcess_ prob trials -- | When processing every input element, hold the process -- for a random time interval having the Gamma distribution -- with the specified shape and scale. randomGammaNet :: Double -- ^ the shape -> Double -- ^ the scale (a reciprocal of the rate) -> Net a a randomGammaNet kappa theta = withinNet $ randomGammaProcess_ kappa theta -- | When processing every input element, hold the process -- for a random time interval having the Beta distribution -- with the specified shape parameters (alpha and beta). randomBetaNet :: Double -- ^ shape (alpha) -> Double -- ^ shape (beta) -> Net a a randomBetaNet alpha beta = withinNet $ randomBetaProcess_ alpha beta -- | When processing every input element, hold the process -- for a random time interval having the Weibull distribution -- with the specified shape and scale. randomWeibullNet :: Double -- ^ shape -> Double -- ^ scale -> Net a a randomWeibullNet alpha beta = withinNet $ randomWeibullProcess_ alpha beta -- | When processing every input element, hold the process -- for a random time interval having the specified discrete distribution. randomDiscreteNet :: DiscretePDF Double -- ^ the discrete probability density function -> Net a a randomDiscreteNet dpdf = withinNet $ randomDiscreteProcess_ dpdf