module Simulation.Aivika.Generator
(Generator(..),
GeneratorType(..),
DiscretePDF(..),
newGenerator,
newRandomGenerator,
newRandomGenerator01) where
import System.Random
import qualified System.Random.MWC as MWC
import Data.IORef
import Data.Word
import Data.Vector
type DiscretePDF a = [(a, Double)]
data Generator =
Generator { generateUniform :: Double -> Double -> IO Double,
generateUniformInt :: Int -> Int -> IO Int,
generateTriangular :: Double -> Double -> Double -> IO Double,
generateNormal :: Double -> Double -> IO Double,
generateLogNormal :: Double -> Double -> IO Double,
generateExponential :: Double -> IO Double,
generateErlang :: Double -> Int -> IO Double,
generatePoisson :: Double -> IO Int,
generateBinomial :: Double -> Int -> IO Int,
generateGamma :: Double -> Double -> IO Double,
generateBeta :: Double -> Double -> IO Double,
generateWeibull :: Double -> Double -> IO Double,
generateDiscrete :: forall a. DiscretePDF a -> IO a,
generateSequenceNo :: IO Int
}
generateUniform01 :: IO Double
-> Double
-> Double
-> IO Double
generateUniform01 g min max =
do x <- g
return $ min + x * (max min)
generateUniformInt01 :: IO Double
-> Int
-> Int
-> IO Int
generateUniformInt01 g min max =
do x <- g
let min' = fromIntegral min 0.5
max' = fromIntegral max + 0.5
z = round (min' + x * (max' min'))
z' = if z < min
then min
else if z > max
then max
else z
return z'
generateTriangular01 :: IO Double
-> Double
-> Double
-> Double
-> IO Double
generateTriangular01 g min median max =
do x <- g
if x <= (median min) / (max min)
then return $ min + sqrt ((median min) * (max min) * x)
else return $ max sqrt ((max median) * (max min) * (1 x))
newNormalGenerator01 :: IO Double
-> IO (IO Double)
newNormalGenerator01 g =
do nextRef <- newIORef 0.0
flagRef <- newIORef False
xi1Ref <- newIORef 0.0
xi2Ref <- newIORef 0.0
psiRef <- newIORef 0.0
let loop =
do psi <- readIORef psiRef
if (psi >= 1.0) || (psi == 0.0)
then do g1 <- g
g2 <- g
let xi1 = 2.0 * g1 1.0
xi2 = 2.0 * g2 1.0
psi = xi1 * xi1 + xi2 * xi2
writeIORef xi1Ref xi1
writeIORef xi2Ref xi2
writeIORef psiRef psi
loop
else writeIORef psiRef $ sqrt ( 2.0 * log psi / psi)
return $
do flag <- readIORef flagRef
if flag
then do writeIORef flagRef False
readIORef nextRef
else do writeIORef xi1Ref 0.0
writeIORef xi2Ref 0.0
writeIORef psiRef 0.0
loop
xi1 <- readIORef xi1Ref
xi2 <- readIORef xi2Ref
psi <- readIORef psiRef
writeIORef flagRef True
writeIORef nextRef $ xi2 * psi
return $ xi1 * psi
generateExponential01 :: IO Double
-> Double
-> IO Double
generateExponential01 g mu =
do x <- g
return ( log x * mu)
generateErlang01 :: IO Double
-> Double
-> Int
-> IO Double
generateErlang01 g beta m =
do x <- loop m 1
return ( log x * beta)
where loop m acc
| m < 0 = error "Negative shape: generateErlang."
| m == 0 = return acc
| otherwise = do x <- g
loop (m 1) (x * acc)
generatePoisson01 :: IO Double
-> Double
-> IO Int
generatePoisson01 g mu =
do prob0 <- g
let loop prob prod acc
| prob <= prod = return acc
| otherwise = loop
(prob prod)
(prod * mu / fromIntegral (acc + 1))
(acc + 1)
loop prob0 (exp ( mu)) 0
generateBinomial01 :: IO Double
-> Double
-> Int
-> IO Int
generateBinomial01 g prob trials = loop trials 0 where
loop n acc
| n < 0 = error "Negative number of trials: generateBinomial."
| n == 0 = return acc
| otherwise = do x <- g
if x <= prob
then loop (n 1) (acc + 1)
else loop (n 1) acc
generateGamma01 :: IO Double
-> IO Double
-> Double
-> Double
-> IO Double
generateGamma01 gn gu kappa theta
| kappa <= 0 = error "The shape parameter (kappa) must be positive: generateGamma01"
| kappa > 1 =
let d = kappa 1 / 3
c = 1 / sqrt (9 * d)
loop =
do z <- gn
if z <= (1 / c)
then loop
else do let v = (1 + c * z) ** 3
u <- gu
if log u > 0.5 * z * z + d d * v + d * log v
then loop
else return $ d * v * theta
in loop
| otherwise =
do x <- generateGamma01 gn gu (1 + kappa) theta
u <- gu
return $ x * u ** (1 / kappa)
generateBeta01 :: IO Double
-> IO Double
-> Double
-> Double
-> IO Double
generateBeta01 gn gu alpha beta =
do g1 <- generateGamma01 gn gu alpha 1
g2 <- generateGamma01 gn gu beta 1
return $ g1 / (g1 + g2)
generateWeibull01 :: IO Double
-> Double
-> Double
-> IO Double
generateWeibull01 g alpha beta =
do x <- g
return $ beta * ( log x) ** (1 / alpha)
generateDiscrete01 :: IO Double
-> DiscretePDF a
-> IO a
generateDiscrete01 g [] = error "Empty PDF: generateDiscrete01"
generateDiscrete01 g dpdf =
do x <- g
let loop acc [(a, p)] = a
loop acc ((a, p) : dpdf) =
if x <= acc + p
then a
else loop (acc + p) dpdf
return $ loop 0 dpdf
data GeneratorType = SimpleGenerator
| SimpleGeneratorWithSeed Word32
| CustomGenerator (IO Generator)
| CustomGenerator01 (IO Double)
newGenerator :: GeneratorType -> IO Generator
newGenerator tp =
case tp of
SimpleGenerator ->
MWC.uniform <$> MWC.withSystemRandom (return :: MWC.GenIO -> IO MWC.GenIO) >>= newRandomGenerator01
SimpleGeneratorWithSeed x ->
MWC.uniform <$> MWC.initialize (singleton x) >>= newRandomGenerator01
CustomGenerator g ->
g
CustomGenerator01 g ->
newRandomGenerator01 g
newRandomGenerator :: RandomGen g => g -> IO Generator
newRandomGenerator g =
do r <- newIORef g
let g1 = do g <- readIORef r
let (x, g') = random g
writeIORef r g'
return x
newRandomGenerator01 g1
newRandomGenerator01 :: IO Double -> IO Generator
newRandomGenerator01 g =
do let g1 = g
g2 <- newNormalGenerator01 g1
let g3 mu nu = do { x <- g2; return $ mu + nu * x }
g4 mu nu = do { x <- g2; return $ exp (mu + nu * x) }
seqNoRef <- newIORef 0
let seqNo = do { x <- readIORef seqNoRef; modifyIORef' seqNoRef (+1); return x }
return Generator { generateUniform = generateUniform01 g1,
generateUniformInt = generateUniformInt01 g1,
generateTriangular = generateTriangular01 g1,
generateNormal = g3,
generateLogNormal = g4,
generateExponential = generateExponential01 g1,
generateErlang = generateErlang01 g1,
generatePoisson = generatePoisson01 g1,
generateBinomial = generateBinomial01 g1,
generateGamma = generateGamma01 g2 g1,
generateBeta = generateBeta01 g2 g1,
generateWeibull = generateWeibull01 g1,
generateDiscrete = generateDiscrete01 g1,
generateSequenceNo = seqNo }