module Simulation.Aivika.Trans.Net
(
Net(..),
iterateNet,
emptyNet,
arrNet,
accumNet,
netUsingId,
arrivalNet,
delayNet,
netProcessor,
processorNet) where
import qualified Control.Category as C
import Control.Arrow
import Control.Monad.Trans
import Simulation.Aivika.Trans.Session
import Simulation.Aivika.Trans.ProtoRef
import Simulation.Aivika.Trans.Comp
import Simulation.Aivika.Trans.Parameter
import Simulation.Aivika.Trans.Simulation
import Simulation.Aivika.Trans.Dynamics
import Simulation.Aivika.Trans.Event
import Simulation.Aivika.Trans.Cont
import Simulation.Aivika.Trans.Process
import Simulation.Aivika.Trans.Stream
import Simulation.Aivika.Trans.QueueStrategy
import Simulation.Aivika.Trans.Resource
import Simulation.Aivika.Trans.Processor
import Simulation.Aivika.Trans.Ref
import Simulation.Aivika.Trans.Circuit
import Simulation.Aivika.Arrival (Arrival(..))
newtype Net m a b =
Net { runNet :: a -> Process m (b, Net m a b)
}
instance MonadComp m => C.Category (Net m) where
id = Net $ \a -> return (a, C.id)
(.) = dot
where
(Net g) `dot` (Net f) =
Net $ \a ->
do (b, p1) <- f a
(c, p2) <- g b
return (c, p2 `dot` p1)
instance MonadComp m => Arrow (Net m) where
arr f = Net $ \a -> return (f a, arr f)
first (Net f) =
Net $ \(b, d) ->
do (c, p) <- f b
return ((c, d), first p)
second (Net f) =
Net $ \(d, b) ->
do (c, p) <- f b
return ((d, c), second p)
(Net f) *** (Net g) =
Net $ \(b, b') ->
do (c, p1) <- f b
(c', p2) <- g b'
return ((c, c'), p1 *** p2)
(Net f) &&& (Net g) =
Net $ \b ->
do (c, p1) <- f b
(c', p2) <- g b
return ((c, c'), p1 &&& p2)
instance MonadComp m => ArrowChoice (Net m) where
left x@(Net f) =
Net $ \ebd ->
case ebd of
Left b ->
do (c, p) <- f b
return (Left c, left p)
Right d ->
return (Right d, left x)
right x@(Net f) =
Net $ \edb ->
case edb of
Right b ->
do (c, p) <- f b
return (Right c, right p)
Left d ->
return (Left d, right x)
x@(Net f) +++ y@(Net g) =
Net $ \ebb' ->
case ebb' of
Left b ->
do (c, p1) <- f b
return (Left c, p1 +++ y)
Right b' ->
do (c', p2) <- g b'
return (Right c', x +++ p2)
x@(Net f) ||| y@(Net g) =
Net $ \ebc ->
case ebc of
Left b ->
do (d, p1) <- f b
return (d, p1 ||| y)
Right b' ->
do (d, p2) <- g b'
return (d, x ||| p2)
emptyNet :: MonadComp m => Net m a b
emptyNet = Net $ const neverProcess
arrNet :: MonadComp m => (a -> Process m b) -> Net m a b
arrNet f =
let x =
Net $ \a ->
do b <- f a
return (b, x)
in x
accumNet :: MonadComp m => (acc -> a -> Process m (acc, b)) -> acc -> Net m a b
accumNet f acc =
Net $ \a ->
do (acc', b) <- f acc a
return (b, accumNet f acc')
netUsingId :: MonadComp m => ProcessId m -> Net m a b -> Net m a b
netUsingId pid (Net f) =
Net $ processUsingId pid . f
netProcessor :: MonadComp m => Net m a b -> Processor m a b
netProcessor = Processor . loop
where loop x as =
Cons $
do (a, as') <- runStream as
(b, x') <- runNet x a
return (b, loop x' as')
processorNet :: MonadComp m => Processor m a b -> Net m a b
processorNet x =
Net $ \a ->
do readingA <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
writingA <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1)
readingB <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
writingB <- liftSimulation $ newResourceWithMaxCount FCFS 1 (Just 1)
conting <- liftSimulation $ newResourceWithMaxCount FCFS 0 (Just 1)
sn <- liftParameter simulationSession
refA <- liftComp $ newProtoRef sn Nothing
refB <- liftComp $ newProtoRef sn Nothing
let input =
do requestResource readingA
Just a <- liftComp $ readProtoRef refA
liftComp $ writeProtoRef refA Nothing
releaseResource writingA
return (a, Cons input)
consume bs =
do (b, bs') <- runStream bs
requestResource writingB
liftComp $ writeProtoRef refB (Just b)
releaseResource readingB
requestResource conting
consume bs'
loop a =
do requestResource writingA
liftComp $ writeProtoRef refA (Just a)
releaseResource readingA
requestResource readingB
Just b <- liftComp $ readProtoRef refB
liftComp $ writeProtoRef refB Nothing
releaseResource writingB
return (b, Net $ \a -> releaseResource conting >> loop a)
spawnProcess $
consume $ runProcessor x (Cons input)
loop a
arrivalNet :: MonadComp m => Net m a (Arrival a)
arrivalNet =
let loop t0 =
Net $ \a ->
do t <- liftDynamics time
let b = Arrival { arrivalValue = a,
arrivalTime = t,
arrivalDelay =
case t0 of
Nothing -> Nothing
Just t0 -> Just (t t0) }
return (b, loop $ Just t)
in loop Nothing
delayNet :: MonadComp m => a -> Net m a a
delayNet a0 =
Net $ \a ->
return (a0, delayNet a)
iterateNet :: MonadComp m => Net m a a -> a -> Process m ()
iterateNet (Net f) a =
do (a', x) <- f a
iterateNet x a'