module Numeric.Algebra.Complex
( Distinguished(..)
, Complicated(..)
, ComplexBasis(..)
, Complex(..)
, realPart
, imagPart
, uncomplicate
) where
import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Rep
import Data.Foldable
import Data.Ix hiding (index)
import Data.Semigroup
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Traversable
import Numeric.Algebra
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Complex.Class
import Numeric.Algebra.Quaternion.Class
import Prelude hiding ((),(+),(*),negate,subtract, fromInteger,recip)
data ComplexBasis = E | I deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Complex a = Complex a a deriving (Eq,Show,Read,Data,Typeable)
realPart :: (Representable f, Rep f ~ ComplexBasis) => f a -> a
realPart f = index f E
imagPart :: (Representable f, Rep f ~ ComplexBasis) => f a -> a
imagPart f = index f I
instance Distinguished ComplexBasis where
e = E
instance Complicated ComplexBasis where
i = I
instance Rig r => Distinguished (Complex r) where
e = Complex one zero
instance Rig r => Complicated (Complex r) where
i = Complex zero one
instance Rig r => Distinguished (ComplexBasis -> r) where
e E = one
e _ = zero
instance Rig r => Complicated (ComplexBasis -> r) where
i I = one
i _ = zero
instance Representable Complex where
type Rep Complex = ComplexBasis
tabulate f = Complex (f E) (f I)
index (Complex a _ ) E = a
index (Complex _ b ) I = b
instance Distributive Complex where
distribute = distributeRep
instance Functor Complex where
fmap f (Complex a b) = Complex (f a) (f b)
instance Apply Complex where
(<.>) = apRep
instance Applicative Complex where
pure = pureRep
(<*>) = apRep
instance Bind Complex where
(>>-) = bindRep
instance Monad Complex where
return = pureRep
(>>=) = bindRep
instance MonadReader ComplexBasis Complex where
ask = askRep
local = localRep
instance Foldable Complex where
foldMap f (Complex a b) = f a `mappend` f b
instance Traversable Complex where
traverse f (Complex a b) = Complex <$> f a <*> f b
instance Foldable1 Complex where
foldMap1 f (Complex a b) = f a <> f b
instance Traversable1 Complex where
traverse1 f (Complex a b) = Complex <$> f a <.> f b
instance Additive r => Additive (Complex r) where
(+) = addRep
sinnum1p = sinnum1pRep
instance LeftModule r s => LeftModule r (Complex s) where
r .* Complex a b = Complex (r .* a) (r .* b)
instance RightModule r s => RightModule r (Complex s) where
Complex a b *. r = Complex (a *. r) (b *. r)
instance Monoidal r => Monoidal (Complex r) where
zero = zeroRep
sinnum = sinnumRep
instance Group r => Group (Complex r) where
() = minusRep
negate = negateRep
subtract = subtractRep
times = timesRep
instance Abelian r => Abelian (Complex r)
instance Idempotent r => Idempotent (Complex r)
instance Partitionable r => Partitionable (Complex r) where
partitionWith f (Complex a b) = id =<<
partitionWith (\a1 a2 ->
partitionWith (\b1 b2 -> f (Complex a1 b1) (Complex a2 b2)) b) a
instance Rng k => Algebra k ComplexBasis where
mult f = f' where
fe = f E E f I I
fi = f E I + f I E
f' E = fe
f' I = fi
instance Rng k => UnitalAlgebra k ComplexBasis where
unit x E = x
unit _ _ = zero
instance Rng k => Coalgebra k ComplexBasis where
comult f E E = f E
comult f I I = f I
comult _ _ _ = zero
instance Rng k => CounitalCoalgebra k ComplexBasis where
counit f = f E + f I
instance Rng k => Bialgebra k ComplexBasis
instance (InvolutiveSemiring k, Rng k) => InvolutiveAlgebra k ComplexBasis where
inv f = f' where
afe = adjoint (f E)
nfi = negate (f I)
f' E = afe
f' I = nfi
instance (InvolutiveSemiring k, Rng k) => InvolutiveCoalgebra k ComplexBasis where
coinv = inv
instance (InvolutiveSemiring k, Rng k) => HopfAlgebra k ComplexBasis where
antipode = inv
instance (Commutative r, Rng r) => Multiplicative (Complex r) where
(*) = mulRep
instance (TriviallyInvolutive r, Rng r) => Commutative (Complex r)
instance (Commutative r, Rng r) => Semiring (Complex r)
instance (Commutative r, Ring r) => Unital (Complex r) where
one = oneRep
instance (Commutative r, Ring r) => Rig (Complex r) where
fromNatural n = Complex (fromNatural n) zero
instance (Commutative r, Ring r) => Ring (Complex r) where
fromInteger n = Complex (fromInteger n) zero
instance (Commutative r, Rng r) => LeftModule (Complex r) (Complex r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Complex r) (Complex r) where (*.) = (*)
instance (Commutative r, Rng r, InvolutiveMultiplication r) => InvolutiveMultiplication (Complex r) where
adjoint (Complex a b) = Complex (adjoint a) (negate b)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Complex r)
instance (Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Complex r) where
quadrance n = realPart $ adjoint n * n
instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Complex r) where
recip q@(Complex a b) = Complex (qq \\ a) (qq \\ b)
where qq = quadrance q
uncomplicate :: Hamiltonian q => ComplexBasis -> ComplexBasis -> q
uncomplicate E E = e
uncomplicate I E = i
uncomplicate E I = j
uncomplicate I I = k