module Numeric.Algebra.Dual
( Distinguished(..)
, Infinitesimal(..)
, DualBasis(..)
, Dual(..)
) where
import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Rep
import Data.Foldable
import Data.Ix
import Data.Semigroup hiding (Dual)
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Traversable
import Numeric.Algebra
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Dual.Class
import Prelude hiding ((),(+),(*),negate,subtract, fromInteger,recip)
data DualBasis = E | D deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Dual a = Dual a a deriving (Eq,Show,Read,Data,Typeable)
instance Distinguished DualBasis where
e = E
instance Infinitesimal DualBasis where
d = D
instance Rig r => Distinguished (Dual r) where
e = Dual one zero
instance Rig r => Infinitesimal (Dual r) where
d = Dual zero one
instance Rig r => Distinguished (DualBasis -> r) where
e E = one
e _ = zero
instance Rig r => Infinitesimal (DualBasis -> r) where
d D = one
d _ = zero
instance Representable Dual where
type Rep Dual = DualBasis
tabulate f = Dual (f E) (f D)
index (Dual a _ ) E = a
index (Dual _ b ) D = b
instance Distributive Dual where
distribute = distributeRep
instance Functor Dual where
fmap f (Dual a b) = Dual (f a) (f b)
instance Apply Dual where
(<.>) = apRep
instance Applicative Dual where
pure = pureRep
(<*>) = apRep
instance Bind Dual where
(>>-) = bindRep
instance Monad Dual where
return = pureRep
(>>=) = bindRep
instance MonadReader DualBasis Dual where
ask = askRep
local = localRep
instance Foldable Dual where
foldMap f (Dual a b) = f a `mappend` f b
instance Traversable Dual where
traverse f (Dual a b) = Dual <$> f a <*> f b
instance Foldable1 Dual where
foldMap1 f (Dual a b) = f a <> f b
instance Traversable1 Dual where
traverse1 f (Dual a b) = Dual <$> f a <.> f b
instance Additive r => Additive (Dual r) where
(+) = addRep
sinnum1p = sinnum1pRep
instance LeftModule r s => LeftModule r (Dual s) where
r .* Dual a b = Dual (r .* a) (r .* b)
instance RightModule r s => RightModule r (Dual s) where
Dual a b *. r = Dual (a *. r) (b *. r)
instance Monoidal r => Monoidal (Dual r) where
zero = zeroRep
sinnum = sinnumRep
instance Group r => Group (Dual r) where
() = minusRep
negate = negateRep
subtract = subtractRep
times = timesRep
instance Abelian r => Abelian (Dual r)
instance Idempotent r => Idempotent (Dual r)
instance Partitionable r => Partitionable (Dual r) where
partitionWith f (Dual a b) = id =<<
partitionWith (\a1 a2 ->
partitionWith (\b1 b2 -> f (Dual a1 b1) (Dual a2 b2)) b) a
instance Rng k => Algebra k DualBasis where
mult f = f' where
fe = f E E
fd = f E D + f D E
f' E = fe
f' D = fd
instance Rng k => UnitalAlgebra k DualBasis where
unit x E = x
unit _ _ = zero
instance Rng k => Coalgebra k DualBasis where
comult f E E = f E
comult f D D = f D
comult _ _ _ = zero
instance Rng k => CounitalCoalgebra k DualBasis where
counit f = f E + f D
instance Rng k => Bialgebra k DualBasis
instance (InvolutiveSemiring k, Rng k) => InvolutiveAlgebra k DualBasis where
inv f = f' where
afe = adjoint (f E)
nfd = negate (f D)
f' E = afe
f' D = nfd
instance (InvolutiveSemiring k, Rng k) => InvolutiveCoalgebra k DualBasis where
coinv = inv
instance (InvolutiveSemiring k, Rng k) => HopfAlgebra k DualBasis where
antipode = inv
instance (Commutative r, Rng r) => Multiplicative (Dual r) where
(*) = mulRep
instance (TriviallyInvolutive r, Rng r) => Commutative (Dual r)
instance (Commutative r, Rng r) => Semiring (Dual r)
instance (Commutative r, Ring r) => Unital (Dual r) where
one = oneRep
instance (Commutative r, Ring r) => Rig (Dual r) where
fromNatural n = Dual (fromNatural n) zero
instance (Commutative r, Ring r) => Ring (Dual r) where
fromInteger n = Dual (fromInteger n) zero
instance (Commutative r, Rng r) => LeftModule (Dual r) (Dual r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Dual r) (Dual r) where (*.) = (*)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveMultiplication (Dual r) where
adjoint (Dual a b) = Dual (adjoint a) (negate b)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Dual r)
instance (Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Dual r) where
quadrance n = case adjoint n * n of
Dual a _ -> a
instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Dual r) where
recip q@(Dual a b) = Dual (qq \\ a) (qq \\ b)
where qq = quadrance q