module Numeric.Algebra.Factorable
(
Factorable(..)
) where
import Data.List.NonEmpty
import Numeric.Algebra.Class (Multiplicative(..))
import Prelude hiding (concat)
class Multiplicative m => Factorable m where
factorWith :: (m -> m -> r) -> m -> NonEmpty r
instance Factorable Bool where
factorWith f False = f False False :| [f False True, f True False]
factorWith f True = f True True :| []
instance Factorable () where
factorWith f () = f () () :| []
concat :: NonEmpty (NonEmpty a) -> NonEmpty a
concat m = m >>= id
instance (Factorable a, Factorable b) => Factorable (a,b) where
factorWith f (a,b) = concat $ factorWith (\ax ay ->
factorWith (\bx by -> f (ax,bx) (ay,by)) b) a
instance (Factorable a, Factorable b, Factorable c) => Factorable (a,b,c) where
factorWith f (a,b,c) = concat $ factorWith (\ax ay ->
concat $ factorWith (\bx by ->
factorWith (\cx cy -> f (ax,bx,cx) (ay,by,cy)) c) b) a
instance (Factorable a, Factorable b, Factorable c,Factorable d ) => Factorable (a,b,c,d) where
factorWith f (a,b,c,d) = concat $ factorWith (\ax ay ->
concat $ factorWith (\bx by ->
concat $ factorWith (\cx cy ->
factorWith (\dx dy -> f (ax,bx,cx,dx) (ay,by,cy,dy)) d) c) b) a
instance (Factorable a, Factorable b, Factorable c,Factorable d, Factorable e) => Factorable (a,b,c,d,e) where
factorWith f (a,b,c,d,e) = concat $ factorWith (\ax ay ->
concat $ factorWith (\bx by ->
concat $ factorWith (\cx cy ->
concat $ factorWith (\dx dy ->
factorWith (\ex ey -> f (ax,bx,cx,dx,ex) (ay,by,cy,dy,ey)) e) d) c) b) a