module Numeric.Coalgebra.Dual
( Distinguished(..)
, Infinitesimal(..)
, DualBasis'(..)
, Dual'(..)
) where
import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Rep
import Data.Foldable
import Data.Ix
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup
import Data.Traversable
import Numeric.Algebra
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Dual.Class
import Prelude hiding ((),(+),(*),negate,subtract, fromInteger,recip)
data DualBasis' = E | D deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Dual' a = Dual' a a deriving (Eq,Show,Read,Data,Typeable)
instance Distinguished DualBasis' where
e = E
instance Infinitesimal DualBasis' where
d = D
instance Rig r => Distinguished (Dual' r) where
e = Dual' one zero
instance Rig r => Infinitesimal (Dual' r) where
d = Dual' zero one
instance Rig r => Distinguished (DualBasis' -> r) where
e E = one
e _ = zero
instance Rig r => Infinitesimal (DualBasis' -> r) where
d D = one
d _ = zero
instance Representable Dual' where
type Rep Dual' = DualBasis'
tabulate f = Dual' (f E) (f D)
index (Dual' a _ ) E = a
index (Dual' _ b ) D = b
instance Distributive Dual' where
distribute = distributeRep
instance Functor Dual' where
fmap f (Dual' a b) = Dual' (f a) (f b)
instance Apply Dual' where
(<.>) = apRep
instance Applicative Dual' where
pure = pureRep
(<*>) = apRep
instance Bind Dual' where
(>>-) = bindRep
instance Monad Dual' where
return = pureRep
(>>=) = bindRep
instance MonadReader DualBasis' Dual' where
ask = askRep
local = localRep
instance Foldable Dual' where
foldMap f (Dual' a b) = f a `mappend` f b
instance Traversable Dual' where
traverse f (Dual' a b) = Dual' <$> f a <*> f b
instance Foldable1 Dual' where
foldMap1 f (Dual' a b) = f a <> f b
instance Traversable1 Dual' where
traverse1 f (Dual' a b) = Dual' <$> f a <.> f b
instance Additive r => Additive (Dual' r) where
(+) = addRep
sinnum1p = sinnum1pRep
instance LeftModule r s => LeftModule r (Dual' s) where
r .* Dual' a b = Dual' (r .* a) (r .* b)
instance RightModule r s => RightModule r (Dual' s) where
Dual' a b *. r = Dual' (a *. r) (b *. r)
instance Monoidal r => Monoidal (Dual' r) where
zero = zeroRep
sinnum = sinnumRep
instance Group r => Group (Dual' r) where
() = minusRep
negate = negateRep
subtract = subtractRep
times = timesRep
instance Abelian r => Abelian (Dual' r)
instance Idempotent r => Idempotent (Dual' r)
instance Partitionable r => Partitionable (Dual' r) where
partitionWith f (Dual' a b) = id =<<
partitionWith (\a1 a2 ->
partitionWith (\b1 b2 -> f (Dual' a1 b1) (Dual' a2 b2)) b) a
instance Semiring k => Algebra k DualBasis' where
mult f = f' where
fe = f E E
fd = f D D
f' E = fe
f' D = fd
instance Semiring k => UnitalAlgebra k DualBasis' where
unit = const
instance Rng k => Coalgebra k DualBasis' where
comult f = f' where
fe = f E
fd = f D
f' E E = fe
f' E D = fd
f' D E = fd
f' D D = zero
instance Rng k => CounitalCoalgebra k DualBasis' where
counit f = f E
instance Rng k => Bialgebra k DualBasis'
instance (InvolutiveSemiring k, Rng k) => InvolutiveAlgebra k DualBasis' where
inv f = f' where
afe = adjoint (f E)
nfd = negate (f D)
f' E = afe
f' D = nfd
instance (InvolutiveSemiring k, Rng k) => InvolutiveCoalgebra k DualBasis' where
coinv = inv
instance (InvolutiveSemiring k, Rng k) => HopfAlgebra k DualBasis' where
antipode = inv
instance (Commutative r, Rng r) => Multiplicative (Dual' r) where
(*) = mulRep
instance (TriviallyInvolutive r, Rng r) => Commutative (Dual' r)
instance (Commutative r, Rng r) => Semiring (Dual' r)
instance (Commutative r, Ring r) => Unital (Dual' r) where
one = oneRep
instance (Commutative r, Ring r) => Rig (Dual' r) where
fromNatural n = Dual' (fromNatural n) zero
instance (Commutative r, Ring r) => Ring (Dual' r) where
fromInteger n = Dual' (fromInteger n) zero
instance (Commutative r, Rng r) => LeftModule (Dual' r) (Dual' r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Dual' r) (Dual' r) where (*.) = (*)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveMultiplication (Dual' r) where
adjoint (Dual' a b) = Dual' (adjoint a) (negate b)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Dual' r)
instance (Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Dual' r) where
quadrance n = case adjoint n * n of
Dual' a _ -> a
instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Dual' r) where
recip q@(Dual' a b) = Dual' (qq \\ a) (qq \\ b)
where qq = quadrance q