module Numeric.Coalgebra.Trigonometric
( Trigonometric(..)
, TrigBasis(..)
, Trig(..)
) where
import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Rep
import Data.Foldable
import Data.Ix
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup
import Data.Traversable
import Numeric.Algebra
import Prelude hiding ((),(+),(*),negate,subtract, fromInteger, sin, cos)
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Complex.Class
import Numeric.Coalgebra.Trigonometric.Class
data TrigBasis = Cos | Sin deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Trig a = Trig a a deriving (Eq,Show,Read,Data,Typeable)
instance Distinguished TrigBasis where
e = Cos
instance Complicated TrigBasis where
i = Sin
instance Trigonometric TrigBasis where
cos = Cos
sin = Sin
instance Rig r => Distinguished (Trig r) where
e = Trig one zero
instance Rig r => Complicated (Trig r) where
i = Trig zero one
instance Rig r => Trigonometric (Trig r) where
cos = Trig one zero
sin = Trig zero one
instance Rig r => Distinguished (TrigBasis -> r) where
e = cos
instance Rig r => Complicated (TrigBasis -> r) where
i = sin
instance Rig r => Trigonometric (TrigBasis -> r) where
cos Sin = zero
cos Cos = one
sin Sin = one
sin Cos = zero
instance Representable Trig where
type Rep Trig = TrigBasis
tabulate f = Trig (f Cos) (f Sin)
index (Trig a _ ) Cos = a
index (Trig _ b ) Sin = b
instance Distributive Trig where
distribute = distributeRep
instance Functor Trig where
fmap f (Trig a b) = Trig (f a) (f b)
instance Apply Trig where
(<.>) = apRep
instance Applicative Trig where
pure = pureRep
(<*>) = apRep
instance Bind Trig where
(>>-) = bindRep
instance Monad Trig where
return = pureRep
(>>=) = bindRep
instance MonadReader TrigBasis Trig where
ask = askRep
local = localRep
instance Foldable Trig where
foldMap f (Trig a b) = f a `mappend` f b
instance Traversable Trig where
traverse f (Trig a b) = Trig <$> f a <*> f b
instance Foldable1 Trig where
foldMap1 f (Trig a b) = f a <> f b
instance Traversable1 Trig where
traverse1 f (Trig a b) = Trig <$> f a <.> f b
instance Additive r => Additive (Trig r) where
(+) = addRep
sinnum1p = sinnum1pRep
instance LeftModule r s => LeftModule r (Trig s) where
r .* Trig a b = Trig (r .* a) (r .* b)
instance RightModule r s => RightModule r (Trig s) where
Trig a b *. r = Trig (a *. r) (b *. r)
instance Monoidal r => Monoidal (Trig r) where
zero = zeroRep
sinnum = sinnumRep
instance Group r => Group (Trig r) where
() = minusRep
negate = negateRep
subtract = subtractRep
times = timesRep
instance Abelian r => Abelian (Trig r)
instance Idempotent r => Idempotent (Trig r)
instance Partitionable r => Partitionable (Trig r) where
partitionWith f (Trig a b) = id =<<
partitionWith (\a1 a2 ->
partitionWith (\b1 b2 -> f (Trig a1 b1) (Trig a2 b2)) b) a
instance (Commutative k, Rng k) => Algebra k TrigBasis where
mult f = f' where
fc = f Cos Cos
fs = f Sin Sin
f' Cos = fc
f' Sin = fs
instance (Commutative k, Rng k) => UnitalAlgebra k TrigBasis where
unit = const
instance (Commutative k, Rng k) => Coalgebra k TrigBasis where
comult f = f' where
fs = f Sin
fc = f Cos
fc' = negate fc
f' Sin Sin = fc'
f' Sin Cos = fs
f' Cos Sin = fs
f' Cos Cos = fc
instance (Commutative k, Rng k) => Bialgebra k TrigBasis
instance (Commutative k, Group k, InvolutiveSemiring k) => InvolutiveAlgebra k TrigBasis where
inv f = f' where
afc = adjoint (f Cos)
nfs = negate (f Sin)
f' Cos = afc
f' Sin = nfs
instance (Commutative k, Group k, InvolutiveSemiring k) => InvolutiveCoalgebra k TrigBasis where
coinv = inv
instance (Commutative k, Group k, InvolutiveSemiring k) => HopfAlgebra k TrigBasis where
antipode = inv
instance (Commutative k, Rng k) => CounitalCoalgebra k TrigBasis where
counit f = f Cos
instance (Commutative k, Rng k) => Multiplicative (Trig k) where
(*) = mulRep
instance (Commutative k, Rng k) => Commutative (Trig k)
instance (Commutative k, Rng k) => Semiring (Trig k)
instance (Commutative k, Ring k) => Unital (Trig k) where
one = Trig one zero
instance (Commutative r, Ring r) => Rig (Trig r) where
fromNatural n = Trig (fromNatural n) zero
instance (Commutative r, Ring r) => Ring (Trig r) where
fromInteger n = Trig (fromInteger n) zero
instance (Commutative r, Rng r) => LeftModule (Trig r) (Trig r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Trig r) (Trig r) where (*.) = (*)
instance (Commutative r, Rng r, InvolutiveMultiplication r) => InvolutiveMultiplication (Trig r) where
adjoint (Trig a b) = Trig (adjoint a) (negate b)
instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Trig r)