{-# LANGUAGE Trustworthy #-} {-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash, UnboxedTuples, StandaloneDeriving, NegativeLiterals #-} {-# OPTIONS_HADDOCK not-home #-} ----------------------------------------------------------------------------- -- | -- Module : GHC.Int -- Copyright : (c) The University of Glasgow 1997-2002 -- License : see libraries/base/LICENSE -- -- Maintainer : cvs-ghc@haskell.org -- Stability : internal -- Portability : non-portable (GHC Extensions) -- -- The sized integral datatypes, 'Int8', 'Int16', 'Int32', and 'Int64'. -- ----------------------------------------------------------------------------- #include "MachDeps.h" module GHC.Int ( Int(..), Int8(..), Int16(..), Int32(..), Int64(..), uncheckedIShiftL64#, uncheckedIShiftRA64#, -- * Equality operators -- | See GHC.Classes#matching_overloaded_methods_in_rules eqInt, neInt, gtInt, geInt, ltInt, leInt, eqInt8, neInt8, gtInt8, geInt8, ltInt8, leInt8, eqInt16, neInt16, gtInt16, geInt16, ltInt16, leInt16, eqInt32, neInt32, gtInt32, geInt32, ltInt32, leInt32, eqInt64, neInt64, gtInt64, geInt64, ltInt64, leInt64 ) where import Data.Bits import Data.Maybe #if WORD_SIZE_IN_BITS < 64 import GHC.IntWord64 #endif import GHC.Base import GHC.Enum import GHC.Num import GHC.Real import GHC.Read import GHC.Arr import GHC.Word hiding (uncheckedShiftL64#, uncheckedShiftRL64#) import GHC.Show ------------------------------------------------------------------------ -- type Int8 ------------------------------------------------------------------------ -- Int8 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt8" #-} Int8 = I8# Int# -- ^ 8-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since 2.01 instance Eq Int8 where (==) = eqInt8 (/=) = neInt8 eqInt8, neInt8 :: Int8 -> Int8 -> Bool eqInt8 (I8# x) (I8# y) = isTrue# (x ==# y) neInt8 (I8# x) (I8# y) = isTrue# (x /=# y) {-# INLINE [1] eqInt8 #-} {-# INLINE [1] neInt8 #-} -- | @since 2.01 instance Ord Int8 where (<) = ltInt8 (<=) = leInt8 (>=) = geInt8 (>) = gtInt8 {-# INLINE [1] gtInt8 #-} {-# INLINE [1] geInt8 #-} {-# INLINE [1] ltInt8 #-} {-# INLINE [1] leInt8 #-} gtInt8, geInt8, ltInt8, leInt8 :: Int8 -> Int8 -> Bool (I8# x) `gtInt8` (I8# y) = isTrue# (x ># y) (I8# x) `geInt8` (I8# y) = isTrue# (x >=# y) (I8# x) `ltInt8` (I8# y) = isTrue# (x <# y) (I8# x) `leInt8` (I8# y) = isTrue# (x <=# y) -- | @since 2.01 instance Show Int8 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since 2.01 instance Num Int8 where (I8# x#) + (I8# y#) = I8# (narrow8Int# (x# +# y#)) (I8# x#) - (I8# y#) = I8# (narrow8Int# (x# -# y#)) (I8# x#) * (I8# y#) = I8# (narrow8Int# (x# *# y#)) negate (I8# x#) = I8# (narrow8Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I8# (narrow8Int# (integerToInt# i)) -- | @since 2.01 instance Real Int8 where toRational x = toInteger x % 1 -- | @since 2.01 instance Enum Int8 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int8" pred x | x /= minBound = x - 1 | otherwise = predError "Int8" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int8) && i <= fromIntegral (maxBound::Int8) = I8# i# | otherwise = toEnumError "Int8" i (minBound::Int8, maxBound::Int8) fromEnum (I8# x#) = I# x# -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since 2.01 instance Integral Int8 where quot x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (narrow8Int# (x# `quotInt#` y#)) rem (I8# x#) y@(I8# y#) | y == 0 = divZeroError | otherwise = I8# (narrow8Int# (x# `remInt#` y#)) div x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I8# (narrow8Int# (x# `divInt#` y#)) mod (I8# x#) y@(I8# y#) | y == 0 = divZeroError | otherwise = I8# (narrow8Int# (x# `modInt#` y#)) quotRem x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I8# (narrow8Int# q), I8# (narrow8Int# r)) divMod x@(I8# x#) y@(I8# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I8# (narrow8Int# d), I8# (narrow8Int# m)) toInteger (I8# x#) = IS x# -- | @since 2.01 instance Bounded Int8 where minBound = -0x80 maxBound = 0x7F -- | @since 2.01 instance Ix Int8 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n -- | @since 2.01 instance Read Int8 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since 2.01 instance Bits Int8 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I8# x#) .&. (I8# y#) = I8# (x# `andI#` y#) (I8# x#) .|. (I8# y#) = I8# (x# `orI#` y#) (I8# x#) `xor` (I8# y#) = I8# (x# `xorI#` y#) complement (I8# x#) = I8# (notI# x#) (I8# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I8# (narrow8Int# (x# `iShiftL#` i#)) | otherwise = I8# (x# `iShiftRA#` negateInt# i#) (I8# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I8# (narrow8Int# (x# `iShiftL#` i#)) | otherwise = overflowError (I8# x#) `unsafeShiftL` (I# i#) = I8# (narrow8Int# (x# `uncheckedIShiftL#` i#)) (I8# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I8# (x# `iShiftRA#` i#) | otherwise = overflowError (I8# x#) `unsafeShiftR` (I# i#) = I8# (x# `uncheckedIShiftRA#` i#) (I8# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I8# x# | otherwise = I8# (narrow8Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (8# -# i'#))))) where !x'# = narrow8Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 7##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I8# x#) = I# (word2Int# (popCnt8# (int2Word# x#))) bit = bitDefault testBit = testBitDefault -- | @since 4.6.0.0 instance FiniteBits Int8 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 8 countLeadingZeros (I8# x#) = I# (word2Int# (clz8# (int2Word# x#))) countTrailingZeros (I8# x#) = I# (word2Int# (ctz8# (int2Word# x#))) {-# RULES "fromIntegral/Int8->Int8" fromIntegral = id :: Int8 -> Int8 "fromIntegral/a->Int8" fromIntegral = \x -> case fromIntegral x of I# x# -> I8# (narrow8Int# x#) "fromIntegral/Int8->a" fromIntegral = \(I8# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int8,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y :: Float) } "truncate/Float->Int8" truncate = (fromIntegral :: Int -> Int8) . (truncate :: Float -> Int) "floor/Float->Int8" floor = (fromIntegral :: Int -> Int8) . (floor :: Float -> Int) "ceiling/Float->Int8" ceiling = (fromIntegral :: Int -> Int8) . (ceiling :: Float -> Int) "round/Float->Int8" round = (fromIntegral :: Int -> Int8) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int8,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int8) n, y :: Double) } "truncate/Double->Int8" truncate = (fromIntegral :: Int -> Int8) . (truncate :: Double -> Int) "floor/Double->Int8" floor = (fromIntegral :: Int -> Int8) . (floor :: Double -> Int) "ceiling/Double->Int8" ceiling = (fromIntegral :: Int -> Int8) . (ceiling :: Double -> Int) "round/Double->Int8" round = (fromIntegral :: Int -> Int8) . (round :: Double -> Int) #-} ------------------------------------------------------------------------ -- type Int16 ------------------------------------------------------------------------ -- Int16 is represented in the same way as Int. Operations may assume -- and must ensure that it holds only values from its logical range. data {-# CTYPE "HsInt16" #-} Int16 = I16# Int# -- ^ 16-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since 2.01 instance Eq Int16 where (==) = eqInt16 (/=) = neInt16 eqInt16, neInt16 :: Int16 -> Int16 -> Bool eqInt16 (I16# x) (I16# y) = isTrue# (x ==# y) neInt16 (I16# x) (I16# y) = isTrue# (x /=# y) {-# INLINE [1] eqInt16 #-} {-# INLINE [1] neInt16 #-} -- | @since 2.01 instance Ord Int16 where (<) = ltInt16 (<=) = leInt16 (>=) = geInt16 (>) = gtInt16 {-# INLINE [1] gtInt16 #-} {-# INLINE [1] geInt16 #-} {-# INLINE [1] ltInt16 #-} {-# INLINE [1] leInt16 #-} gtInt16, geInt16, ltInt16, leInt16 :: Int16 -> Int16 -> Bool (I16# x) `gtInt16` (I16# y) = isTrue# (x ># y) (I16# x) `geInt16` (I16# y) = isTrue# (x >=# y) (I16# x) `ltInt16` (I16# y) = isTrue# (x <# y) (I16# x) `leInt16` (I16# y) = isTrue# (x <=# y) -- | @since 2.01 instance Show Int16 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since 2.01 instance Num Int16 where (I16# x#) + (I16# y#) = I16# (narrow16Int# (x# +# y#)) (I16# x#) - (I16# y#) = I16# (narrow16Int# (x# -# y#)) (I16# x#) * (I16# y#) = I16# (narrow16Int# (x# *# y#)) negate (I16# x#) = I16# (narrow16Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I16# (narrow16Int# (integerToInt# i)) -- | @since 2.01 instance Real Int16 where toRational x = toInteger x % 1 -- | @since 2.01 instance Enum Int16 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int16" pred x | x /= minBound = x - 1 | otherwise = predError "Int16" toEnum i@(I# i#) | i >= fromIntegral (minBound::Int16) && i <= fromIntegral (maxBound::Int16) = I16# i# | otherwise = toEnumError "Int16" i (minBound::Int16, maxBound::Int16) fromEnum (I16# x#) = I# x# -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since 2.01 instance Integral Int16 where quot x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (narrow16Int# (x# `quotInt#` y#)) rem (I16# x#) y@(I16# y#) | y == 0 = divZeroError | otherwise = I16# (narrow16Int# (x# `remInt#` y#)) div x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I16# (narrow16Int# (x# `divInt#` y#)) mod (I16# x#) y@(I16# y#) | y == 0 = divZeroError | otherwise = I16# (narrow16Int# (x# `modInt#` y#)) quotRem x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I16# (narrow16Int# q), I16# (narrow16Int# r)) divMod x@(I16# x#) y@(I16# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I16# (narrow16Int# d), I16# (narrow16Int# m)) toInteger (I16# x#) = IS x# -- | @since 2.01 instance Bounded Int16 where minBound = -0x8000 maxBound = 0x7FFF -- | @since 2.01 instance Ix Int16 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n -- | @since 2.01 instance Read Int16 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since 2.01 instance Bits Int16 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I16# x#) .&. (I16# y#) = I16# (x# `andI#` y#) (I16# x#) .|. (I16# y#) = I16# (x# `orI#` y#) (I16# x#) `xor` (I16# y#) = I16# (x# `xorI#` y#) complement (I16# x#) = I16# (notI# x#) (I16# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I16# (narrow16Int# (x# `iShiftL#` i#)) | otherwise = I16# (x# `iShiftRA#` negateInt# i#) (I16# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I16# (narrow16Int# (x# `iShiftL#` i#)) | otherwise = overflowError (I16# x#) `unsafeShiftL` (I# i#) = I16# (narrow16Int# (x# `uncheckedIShiftL#` i#)) (I16# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I16# (x# `iShiftRA#` i#) | otherwise = overflowError (I16# x#) `unsafeShiftR` (I# i#) = I16# (x# `uncheckedIShiftRA#` i#) (I16# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I16# x# | otherwise = I16# (narrow16Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (16# -# i'#))))) where !x'# = narrow16Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 15##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I16# x#) = I# (word2Int# (popCnt16# (int2Word# x#))) bit = bitDefault testBit = testBitDefault -- | @since 4.6.0.0 instance FiniteBits Int16 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 16 countLeadingZeros (I16# x#) = I# (word2Int# (clz16# (int2Word# x#))) countTrailingZeros (I16# x#) = I# (word2Int# (ctz16# (int2Word# x#))) {-# RULES "fromIntegral/Word8->Int16" fromIntegral = \(W8# x#) -> I16# (word2Int# x#) "fromIntegral/Int8->Int16" fromIntegral = \(I8# x#) -> I16# x# "fromIntegral/Int16->Int16" fromIntegral = id :: Int16 -> Int16 "fromIntegral/a->Int16" fromIntegral = \x -> case fromIntegral x of I# x# -> I16# (narrow16Int# x#) "fromIntegral/Int16->a" fromIntegral = \(I16# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int16,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y :: Float) } "truncate/Float->Int16" truncate = (fromIntegral :: Int -> Int16) . (truncate :: Float -> Int) "floor/Float->Int16" floor = (fromIntegral :: Int -> Int16) . (floor :: Float -> Int) "ceiling/Float->Int16" ceiling = (fromIntegral :: Int -> Int16) . (ceiling :: Float -> Int) "round/Float->Int16" round = (fromIntegral :: Int -> Int16) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int16,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int16) n, y :: Double) } "truncate/Double->Int16" truncate = (fromIntegral :: Int -> Int16) . (truncate :: Double -> Int) "floor/Double->Int16" floor = (fromIntegral :: Int -> Int16) . (floor :: Double -> Int) "ceiling/Double->Int16" ceiling = (fromIntegral :: Int -> Int16) . (ceiling :: Double -> Int) "round/Double->Int16" round = (fromIntegral :: Int -> Int16) . (round :: Double -> Int) #-} ------------------------------------------------------------------------ -- type Int32 ------------------------------------------------------------------------ -- Int32 is represented in the same way as Int. #if WORD_SIZE_IN_BITS > 32 -- Operations may assume and must ensure that it holds only values -- from its logical range. #endif data {-# CTYPE "HsInt32" #-} Int32 = I32# Int# -- ^ 32-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since 2.01 instance Eq Int32 where (==) = eqInt32 (/=) = neInt32 eqInt32, neInt32 :: Int32 -> Int32 -> Bool eqInt32 (I32# x) (I32# y) = isTrue# (x ==# y) neInt32 (I32# x) (I32# y) = isTrue# (x /=# y) {-# INLINE [1] eqInt32 #-} {-# INLINE [1] neInt32 #-} -- | @since 2.01 instance Ord Int32 where (<) = ltInt32 (<=) = leInt32 (>=) = geInt32 (>) = gtInt32 {-# INLINE [1] gtInt32 #-} {-# INLINE [1] geInt32 #-} {-# INLINE [1] ltInt32 #-} {-# INLINE [1] leInt32 #-} gtInt32, geInt32, ltInt32, leInt32 :: Int32 -> Int32 -> Bool (I32# x) `gtInt32` (I32# y) = isTrue# (x ># y) (I32# x) `geInt32` (I32# y) = isTrue# (x >=# y) (I32# x) `ltInt32` (I32# y) = isTrue# (x <# y) (I32# x) `leInt32` (I32# y) = isTrue# (x <=# y) -- | @since 2.01 instance Show Int32 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since 2.01 instance Num Int32 where (I32# x#) + (I32# y#) = I32# (narrow32Int# (x# +# y#)) (I32# x#) - (I32# y#) = I32# (narrow32Int# (x# -# y#)) (I32# x#) * (I32# y#) = I32# (narrow32Int# (x# *# y#)) negate (I32# x#) = I32# (narrow32Int# (negateInt# x#)) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I32# (narrow32Int# (integerToInt# i)) -- | @since 2.01 instance Enum Int32 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int32" pred x | x /= minBound = x - 1 | otherwise = predError "Int32" #if WORD_SIZE_IN_BITS == 32 toEnum (I# i#) = I32# i# #else toEnum i@(I# i#) | i >= fromIntegral (minBound::Int32) && i <= fromIntegral (maxBound::Int32) = I32# i# | otherwise = toEnumError "Int32" i (minBound::Int32, maxBound::Int32) #endif fromEnum (I32# x#) = I# x# -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since 2.01 instance Integral Int32 where quot x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (narrow32Int# (x# `quotInt#` y#)) rem (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I32# (narrow32Int# (x# `remInt#` y#)) div x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I32# (narrow32Int# (x# `divInt#` y#)) mod (I32# x#) y@(I32# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I32# (narrow32Int# (x# `modInt#` y#)) quotRem x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I32# (narrow32Int# q), I32# (narrow32Int# r)) divMod x@(I32# x#) y@(I32# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I32# (narrow32Int# d), I32# (narrow32Int# m)) toInteger (I32# x#) = IS x# -- | @since 2.01 instance Read Int32 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since 2.01 instance Bits Int32 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I32# x#) .&. (I32# y#) = I32# (x# `andI#` y#) (I32# x#) .|. (I32# y#) = I32# (x# `orI#` y#) (I32# x#) `xor` (I32# y#) = I32# (x# `xorI#` y#) complement (I32# x#) = I32# (notI# x#) (I32# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I32# (narrow32Int# (x# `iShiftL#` i#)) | otherwise = I32# (x# `iShiftRA#` negateInt# i#) (I32# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I32# (narrow32Int# (x# `iShiftL#` i#)) | otherwise = overflowError (I32# x#) `unsafeShiftL` (I# i#) = I32# (narrow32Int# (x# `uncheckedIShiftL#` i#)) (I32# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I32# (x# `iShiftRA#` i#) | otherwise = overflowError (I32# x#) `unsafeShiftR` (I# i#) = I32# (x# `uncheckedIShiftRA#` i#) (I32# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I32# x# | otherwise = I32# (narrow32Int# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (32# -# i'#))))) where !x'# = narrow32Word# (int2Word# x#) !i'# = word2Int# (int2Word# i# `and#` 31##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I32# x#) = I# (word2Int# (popCnt32# (int2Word# x#))) bit = bitDefault testBit = testBitDefault -- | @since 4.6.0.0 instance FiniteBits Int32 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 32 countLeadingZeros (I32# x#) = I# (word2Int# (clz32# (int2Word# x#))) countTrailingZeros (I32# x#) = I# (word2Int# (ctz32# (int2Word# x#))) {-# RULES "fromIntegral/Word8->Int32" fromIntegral = \(W8# x#) -> I32# (word2Int# x#) "fromIntegral/Word16->Int32" fromIntegral = \(W16# x#) -> I32# (word2Int# x#) "fromIntegral/Int8->Int32" fromIntegral = \(I8# x#) -> I32# x# "fromIntegral/Int16->Int32" fromIntegral = \(I16# x#) -> I32# x# "fromIntegral/Int32->Int32" fromIntegral = id :: Int32 -> Int32 "fromIntegral/a->Int32" fromIntegral = \x -> case fromIntegral x of I# x# -> I32# (narrow32Int# x#) "fromIntegral/Int32->a" fromIntegral = \(I32# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int32,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y :: Float) } "truncate/Float->Int32" truncate = (fromIntegral :: Int -> Int32) . (truncate :: Float -> Int) "floor/Float->Int32" floor = (fromIntegral :: Int -> Int32) . (floor :: Float -> Int) "ceiling/Float->Int32" ceiling = (fromIntegral :: Int -> Int32) . (ceiling :: Float -> Int) "round/Float->Int32" round = (fromIntegral :: Int -> Int32) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int32,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int32) n, y :: Double) } "truncate/Double->Int32" truncate = (fromIntegral :: Int -> Int32) . (truncate :: Double -> Int) "floor/Double->Int32" floor = (fromIntegral :: Int -> Int32) . (floor :: Double -> Int) "ceiling/Double->Int32" ceiling = (fromIntegral :: Int -> Int32) . (ceiling :: Double -> Int) "round/Double->Int32" round = (fromIntegral :: Int -> Int32) . (round :: Double -> Int) #-} -- | @since 2.01 instance Real Int32 where toRational x = toInteger x % 1 -- | @since 2.01 instance Bounded Int32 where minBound = -0x80000000 maxBound = 0x7FFFFFFF -- | @since 2.01 instance Ix Int32 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n ------------------------------------------------------------------------ -- type Int64 ------------------------------------------------------------------------ #if WORD_SIZE_IN_BITS < 64 data {-# CTYPE "HsInt64" #-} Int64 = I64# Int64# -- ^ 64-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since 2.01 instance Eq Int64 where (==) = eqInt64 (/=) = neInt64 eqInt64, neInt64 :: Int64 -> Int64 -> Bool eqInt64 (I64# x) (I64# y) = isTrue# (x `eqInt64#` y) neInt64 (I64# x) (I64# y) = isTrue# (x `neInt64#` y) {-# INLINE [1] eqInt64 #-} {-# INLINE [1] neInt64 #-} -- | @since 2.01 instance Ord Int64 where (<) = ltInt64 (<=) = leInt64 (>=) = geInt64 (>) = gtInt64 {-# INLINE [1] gtInt64 #-} {-# INLINE [1] geInt64 #-} {-# INLINE [1] ltInt64 #-} {-# INLINE [1] leInt64 #-} gtInt64, geInt64, ltInt64, leInt64 :: Int64 -> Int64 -> Bool (I64# x) `gtInt64` (I64# y) = isTrue# (x `gtInt64#` y) (I64# x) `geInt64` (I64# y) = isTrue# (x `geInt64#` y) (I64# x) `ltInt64` (I64# y) = isTrue# (x `ltInt64#` y) (I64# x) `leInt64` (I64# y) = isTrue# (x `leInt64#` y) -- | @since 2.01 instance Show Int64 where showsPrec p x = showsPrec p (toInteger x) -- | @since 2.01 instance Num Int64 where (I64# x#) + (I64# y#) = I64# (x# `plusInt64#` y#) (I64# x#) - (I64# y#) = I64# (x# `minusInt64#` y#) (I64# x#) * (I64# y#) = I64# (x# `timesInt64#` y#) negate (I64# x#) = I64# (negateInt64# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I64# (integerToInt64# i) -- | @since 2.01 instance Enum Int64 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int64" pred x | x /= minBound = x - 1 | otherwise = predError "Int64" toEnum (I# i#) = I64# (intToInt64# i#) fromEnum x@(I64# x#) | x >= fromIntegral (minBound::Int) && x <= fromIntegral (maxBound::Int) = I# (int64ToInt# x#) | otherwise = fromEnumError "Int64" x -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFrom #-} enumFrom = integralEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThen #-} enumFromThen = integralEnumFromThen -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromTo #-} enumFromTo = integralEnumFromTo -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThenTo #-} enumFromThenTo = integralEnumFromThenTo -- | @since 2.01 instance Integral Int64 where quot x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `quotInt64#` y#) rem (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `remInt64#` y#) div x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `divInt64#` y#) mod (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `modInt64#` y#) quotRem x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = (I64# (x# `quotInt64#` y#), I64# (x# `remInt64#` y#)) divMod x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = (I64# (x# `divInt64#` y#), I64# (x# `modInt64#` y#)) toInteger (I64# x) = integerFromInt64# x divInt64#, modInt64# :: Int64# -> Int64# -> Int64# -- Define div in terms of quot, being careful to avoid overflow (#7233) x# `divInt64#` y# | isTrue# (x# `gtInt64#` zero) && isTrue# (y# `ltInt64#` zero) = ((x# `minusInt64#` one) `quotInt64#` y#) `minusInt64#` one | isTrue# (x# `ltInt64#` zero) && isTrue# (y# `gtInt64#` zero) = ((x# `plusInt64#` one) `quotInt64#` y#) `minusInt64#` one | otherwise = x# `quotInt64#` y# where !zero = intToInt64# 0# !one = intToInt64# 1# x# `modInt64#` y# | isTrue# (x# `gtInt64#` zero) && isTrue# (y# `ltInt64#` zero) || isTrue# (x# `ltInt64#` zero) && isTrue# (y# `gtInt64#` zero) = if isTrue# (r# `neInt64#` zero) then r# `plusInt64#` y# else zero | otherwise = r# where !zero = intToInt64# 0# !r# = x# `remInt64#` y# -- | @since 2.01 instance Read Int64 where readsPrec p s = [(fromInteger x, r) | (x, r) <- readsPrec p s] -- | @since 2.01 instance Bits Int64 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I64# x#) .&. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `and64#` int64ToWord64# y#)) (I64# x#) .|. (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `or64#` int64ToWord64# y#)) (I64# x#) `xor` (I64# y#) = I64# (word64ToInt64# (int64ToWord64# x# `xor64#` int64ToWord64# y#)) complement (I64# x#) = I64# (word64ToInt64# (not64# (int64ToWord64# x#))) (I64# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftL64#` i#) | otherwise = I64# (x# `iShiftRA64#` negateInt# i#) (I64# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftL64#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftL` (I# i#) = I64# (x# `uncheckedIShiftL64#` i#) (I64# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftRA64#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftR` (I# i#) = I64# (x# `uncheckedIShiftRA64#` i#) (I64# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I64# x# | otherwise = I64# (word64ToInt64# ((x'# `uncheckedShiftL64#` i'#) `or64#` (x'# `uncheckedShiftRL64#` (64# -# i'#)))) where !x'# = int64ToWord64# x# !i'# = word2Int# (int2Word# i# `and#` 63##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I64# x#) = I# (word2Int# (popCnt64# (int64ToWord64# x#))) bit = bitDefault testBit = testBitDefault -- give the 64-bit shift operations the same treatment as the 32-bit -- ones (see GHC.Base), namely we wrap them in tests to catch the -- cases when we're shifting more than 64 bits to avoid unspecified -- behaviour in the C shift operations. iShiftL64#, iShiftRA64# :: Int64# -> Int# -> Int64# a `iShiftL64#` b | isTrue# (b >=# 64#) = intToInt64# 0# | otherwise = a `uncheckedIShiftL64#` b a `iShiftRA64#` b | isTrue# (b >=# 64#) = if isTrue# (a `ltInt64#` (intToInt64# 0#)) then intToInt64# (-1#) else intToInt64# 0# | otherwise = a `uncheckedIShiftRA64#` b {-# RULES "fromIntegral/Int->Int64" fromIntegral = \(I# x#) -> I64# (intToInt64# x#) "fromIntegral/Word->Int64" fromIntegral = \(W# x#) -> I64# (word64ToInt64# (wordToWord64# x#)) "fromIntegral/Word64->Int64" fromIntegral = \(W64# x#) -> I64# (word64ToInt64# x#) "fromIntegral/Int64->Int" fromIntegral = \(I64# x#) -> I# (int64ToInt# x#) "fromIntegral/Int64->Word" fromIntegral = \(I64# x#) -> W# (int2Word# (int64ToInt# x#)) "fromIntegral/Int64->Word64" fromIntegral = \(I64# x#) -> W64# (int64ToWord64# x#) "fromIntegral/Int64->Int64" fromIntegral = id :: Int64 -> Int64 #-} -- No RULES for RealFrac methods if Int is smaller than Int64, we can't -- go through Int and whether going through Integer is faster is uncertain. #else -- Int64 is represented in the same way as Int. -- Operations may assume and must ensure that it holds only values -- from its logical range. data {-# CTYPE "HsInt64" #-} Int64 = I64# Int# -- ^ 64-bit signed integer type -- See GHC.Classes#matching_overloaded_methods_in_rules -- | @since 2.01 instance Eq Int64 where (==) = eqInt64 (/=) = neInt64 eqInt64, neInt64 :: Int64 -> Int64 -> Bool eqInt64 (I64# x) (I64# y) = isTrue# (x ==# y) neInt64 (I64# x) (I64# y) = isTrue# (x /=# y) {-# INLINE [1] eqInt64 #-} {-# INLINE [1] neInt64 #-} -- | @since 2.01 instance Ord Int64 where (<) = ltInt64 (<=) = leInt64 (>=) = geInt64 (>) = gtInt64 {-# INLINE [1] gtInt64 #-} {-# INLINE [1] geInt64 #-} {-# INLINE [1] ltInt64 #-} {-# INLINE [1] leInt64 #-} gtInt64, geInt64, ltInt64, leInt64 :: Int64 -> Int64 -> Bool (I64# x) `gtInt64` (I64# y) = isTrue# (x ># y) (I64# x) `geInt64` (I64# y) = isTrue# (x >=# y) (I64# x) `ltInt64` (I64# y) = isTrue# (x <# y) (I64# x) `leInt64` (I64# y) = isTrue# (x <=# y) -- | @since 2.01 instance Show Int64 where showsPrec p x = showsPrec p (fromIntegral x :: Int) -- | @since 2.01 instance Num Int64 where (I64# x#) + (I64# y#) = I64# (x# +# y#) (I64# x#) - (I64# y#) = I64# (x# -# y#) (I64# x#) * (I64# y#) = I64# (x# *# y#) negate (I64# x#) = I64# (negateInt# x#) abs x | x >= 0 = x | otherwise = negate x signum x | x > 0 = 1 signum 0 = 0 signum _ = -1 fromInteger i = I64# (integerToInt# i) -- | @since 2.01 instance Enum Int64 where succ x | x /= maxBound = x + 1 | otherwise = succError "Int64" pred x | x /= minBound = x - 1 | otherwise = predError "Int64" toEnum (I# i#) = I64# i# fromEnum (I64# x#) = I# x# -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFrom #-} enumFrom = boundedEnumFrom -- See Note [Stable Unfolding for list producers] in GHC.Enum {-# INLINE enumFromThen #-} enumFromThen = boundedEnumFromThen -- | @since 2.01 instance Integral Int64 where quot x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `quotInt#` y#) rem (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The quotRem CPU instruction fails for minBound `quotRem` -1, -- but minBound `rem` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `remInt#` y#) div x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError -- Note [Order of tests] | otherwise = I64# (x# `divInt#` y#) mod (I64# x#) y@(I64# y#) | y == 0 = divZeroError -- The divMod CPU instruction fails for minBound `divMod` -1, -- but minBound `mod` -1 is well-defined (0). We therefore -- special-case it. | y == (-1) = 0 | otherwise = I64# (x# `modInt#` y#) quotRem x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `quotRemInt#` y# of (# q, r #) -> (I64# q, I64# r) divMod x@(I64# x#) y@(I64# y#) | y == 0 = divZeroError -- Note [Order of tests] | y == (-1) && x == minBound = (overflowError, 0) | otherwise = case x# `divModInt#` y# of (# d, m #) -> (I64# d, I64# m) toInteger (I64# x#) = IS x# -- | @since 2.01 instance Read Int64 where readsPrec p s = [(fromIntegral (x::Int), r) | (x, r) <- readsPrec p s] -- | @since 2.01 instance Bits Int64 where {-# INLINE shift #-} {-# INLINE bit #-} {-# INLINE testBit #-} {-# INLINE popCount #-} (I64# x#) .&. (I64# y#) = I64# (x# `andI#` y#) (I64# x#) .|. (I64# y#) = I64# (x# `orI#` y#) (I64# x#) `xor` (I64# y#) = I64# (x# `xorI#` y#) complement (I64# x#) = I64# (notI# x#) (I64# x#) `shift` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftL#` i#) | otherwise = I64# (x# `iShiftRA#` negateInt# i#) (I64# x#) `shiftL` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftL#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftL` (I# i#) = I64# (x# `uncheckedIShiftL#` i#) (I64# x#) `shiftR` (I# i#) | isTrue# (i# >=# 0#) = I64# (x# `iShiftRA#` i#) | otherwise = overflowError (I64# x#) `unsafeShiftR` (I# i#) = I64# (x# `uncheckedIShiftRA#` i#) (I64# x#) `rotate` (I# i#) | isTrue# (i'# ==# 0#) = I64# x# | otherwise = I64# (word2Int# ((x'# `uncheckedShiftL#` i'#) `or#` (x'# `uncheckedShiftRL#` (64# -# i'#)))) where !x'# = int2Word# x# !i'# = word2Int# (int2Word# i# `and#` 63##) bitSizeMaybe i = Just (finiteBitSize i) bitSize i = finiteBitSize i isSigned _ = True popCount (I64# x#) = I# (word2Int# (popCnt64# (int2Word# x#))) bit = bitDefault testBit = testBitDefault {-# RULES "fromIntegral/a->Int64" fromIntegral = \x -> case fromIntegral x of I# x# -> I64# x# "fromIntegral/Int64->a" fromIntegral = \(I64# x#) -> fromIntegral (I# x#) #-} {-# RULES "properFraction/Float->(Int64,Float)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y :: Float) } "truncate/Float->Int64" truncate = (fromIntegral :: Int -> Int64) . (truncate :: Float -> Int) "floor/Float->Int64" floor = (fromIntegral :: Int -> Int64) . (floor :: Float -> Int) "ceiling/Float->Int64" ceiling = (fromIntegral :: Int -> Int64) . (ceiling :: Float -> Int) "round/Float->Int64" round = (fromIntegral :: Int -> Int64) . (round :: Float -> Int) #-} {-# RULES "properFraction/Double->(Int64,Double)" properFraction = \x -> case properFraction x of { (n, y) -> ((fromIntegral :: Int -> Int64) n, y :: Double) } "truncate/Double->Int64" truncate = (fromIntegral :: Int -> Int64) . (truncate :: Double -> Int) "floor/Double->Int64" floor = (fromIntegral :: Int -> Int64) . (floor :: Double -> Int) "ceiling/Double->Int64" ceiling = (fromIntegral :: Int -> Int64) . (ceiling :: Double -> Int) "round/Double->Int64" round = (fromIntegral :: Int -> Int64) . (round :: Double -> Int) #-} uncheckedIShiftL64# :: Int# -> Int# -> Int# uncheckedIShiftL64# = uncheckedIShiftL# uncheckedIShiftRA64# :: Int# -> Int# -> Int# uncheckedIShiftRA64# = uncheckedIShiftRA# #endif -- | @since 4.6.0.0 instance FiniteBits Int64 where {-# INLINE countLeadingZeros #-} {-# INLINE countTrailingZeros #-} finiteBitSize _ = 64 #if WORD_SIZE_IN_BITS < 64 countLeadingZeros (I64# x#) = I# (word2Int# (clz64# (int64ToWord64# x#))) countTrailingZeros (I64# x#) = I# (word2Int# (ctz64# (int64ToWord64# x#))) #else countLeadingZeros (I64# x#) = I# (word2Int# (clz64# (int2Word# x#))) countTrailingZeros (I64# x#) = I# (word2Int# (ctz64# (int2Word# x#))) #endif -- | @since 2.01 instance Real Int64 where toRational x = toInteger x % 1 -- | @since 2.01 instance Bounded Int64 where minBound = -0x8000000000000000 maxBound = 0x7FFFFFFFFFFFFFFF -- | @since 2.01 instance Ix Int64 where range (m,n) = [m..n] unsafeIndex (m,_) i = fromIntegral i - fromIntegral m inRange (m,n) i = m <= i && i <= n ------------------------------------------------------------------------------- {-# RULES "fromIntegral/Natural->Int8" fromIntegral = (fromIntegral :: Int -> Int8) . fromIntegral . naturalToWord "fromIntegral/Natural->Int16" fromIntegral = (fromIntegral :: Int -> Int16) . fromIntegral . naturalToWord "fromIntegral/Natural->Int32" fromIntegral = (fromIntegral :: Int -> Int32) . fromIntegral . naturalToWord #-} {-# RULES "fromIntegral/Int8->Natural" fromIntegral = naturalFromWord . fromIntegral . (fromIntegral :: Int8 -> Int) "fromIntegral/Int16->Natural" fromIntegral = naturalFromWord . fromIntegral . (fromIntegral :: Int16 -> Int) "fromIntegral/Int32->Natural" fromIntegral = naturalFromWord . fromIntegral . (fromIntegral :: Int32 -> Int) #-} #if WORD_SIZE_IN_BITS == 64 -- these RULES are valid for Word==Word64 & Int==Int64 {-# RULES "fromIntegral/Natural->Int64" fromIntegral = (fromIntegral :: Int -> Int64) . fromIntegral . naturalToWord "fromIntegral/Int64->Natural" fromIntegral = naturalFromWord . fromIntegral . (fromIntegral :: Int64 -> Int) #-} #endif {- Note [Order of tests] ~~~~~~~~~~~~~~~~~~~~~~~~~ (See #3065, #5161.) Suppose we had a definition like: quot x y | y == 0 = divZeroError | x == minBound && y == (-1) = overflowError | otherwise = x `primQuot` y Note in particular that the x == minBound test comes before the y == (-1) test. this expands to something like: case y of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case y of -1 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y Now if we have the call (x `quot` 2), and quot gets inlined, then we get: case 2 of 0 -> divZeroError _ -> case x of -9223372036854775808 -> case 2 of -1 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: case x of -9223372036854775808 -> x `primQuot` 2 _ -> x `primQuot` 2 Now we have a case with two identical branches, which would be eliminated (assuming it doesn't affect strictness, which it doesn't in this case), leaving the desired: x `primQuot` 2 except in the minBound branch we know what x is, and GHC cleverly does the division at compile time, giving: case x of -9223372036854775808 -> -4611686018427387904 _ -> x `primQuot` 2 So instead we use a definition like: quot x y | y == 0 = divZeroError | y == (-1) && x == minBound = overflowError | otherwise = x `primQuot` y which gives us: case y of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` y _ -> x `primQuot` y for which our call (x `quot` 2) expands to: case 2 of 0 -> divZeroError -1 -> case x of -9223372036854775808 -> overflowError _ -> x `primQuot` 2 _ -> x `primQuot` 2 which simplifies to: x `primQuot` 2 as required. But we now have the same problem with a constant numerator: the call (2 `quot` y) expands to case y of 0 -> divZeroError -1 -> case 2 of -9223372036854775808 -> overflowError _ -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> 2 `primQuot` y _ -> 2 `primQuot` y which simplifies to: case y of 0 -> divZeroError -1 -> -2 _ -> 2 `primQuot` y However, constant denominators are more common than constant numerators, so the y == (-1) && x == minBound order gives us better code in the common case. -}