{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude #-} {-# OPTIONS_HADDOCK print-explicit-runtime-reps #-} -- Show the levity-polymorphic signature of '$' ----------------------------------------------------------------------------- -- | -- Module : Data.Function -- Copyright : Nils Anders Danielsson 2006 -- , Alexander Berntsen 2014 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : libraries@haskell.org -- Stability : stable -- Portability : portable -- -- Simple combinators working solely on and with functions. -- ----------------------------------------------------------------------------- module Data.Function ( -- * "Prelude" re-exports id, const, (.), flip, ($) -- * Other combinators , (&) , fix , on ) where import GHC.Base ( ($), (.), id, const, flip ) infixl 0 `on` infixl 1 & -- | @'fix' f@ is the least fixed point of the function @f@, -- i.e. the least defined @x@ such that @f x = x@. -- -- For example, we can write the factorial function using direct recursion as -- -- >>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5 -- 120 -- -- This uses the fact that Haskell’s @let@ introduces recursive bindings. We can -- rewrite this definition using 'fix', -- -- >>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5 -- 120 -- -- Instead of making a recursive call, we introduce a dummy parameter @rec@; -- when used within 'fix', this parameter then refers to 'fix'’s argument, hence -- the recursion is reintroduced. fix :: (a -> a) -> a fix f = let x = f x in x -- | @'on' b u x y@ runs the binary function @b@ /on/ the results of applying -- unary function @u@ to two arguments @x@ and @y@. From the opposite -- perspective, it transforms two inputs and combines the outputs. -- -- @((+) \``on`\` f) x y = f x + f y@ -- -- Typical usage: @'Data.List.sortBy' ('Prelude.compare' \`on\` 'Prelude.fst')@. -- -- Algebraic properties: -- -- * @(*) \`on\` 'id' = (*) -- (if (*) ∉ {⊥, 'const' ⊥})@ -- -- * @((*) \`on\` f) \`on\` g = (*) \`on\` (f . g)@ -- -- * @'flip' on f . 'flip' on g = 'flip' on (g . f)@ on :: (b -> b -> c) -> (a -> b) -> a -> a -> c (.*.) `on` f = \x y -> f x .*. f y -- Proofs (so that I don't have to edit the test-suite): -- (*) `on` id -- = -- \x y -> id x * id y -- = -- \x y -> x * y -- = { If (*) /= _|_ or const _|_. } -- (*) -- (*) `on` f `on` g -- = -- ((*) `on` f) `on` g -- = -- \x y -> ((*) `on` f) (g x) (g y) -- = -- \x y -> (\x y -> f x * f y) (g x) (g y) -- = -- \x y -> f (g x) * f (g y) -- = -- \x y -> (f . g) x * (f . g) y -- = -- (*) `on` (f . g) -- = -- (*) `on` f . g -- flip on f . flip on g -- = -- (\h (*) -> (*) `on` h) f . (\h (*) -> (*) `on` h) g -- = -- (\(*) -> (*) `on` f) . (\(*) -> (*) `on` g) -- = -- \(*) -> (*) `on` g `on` f -- = { See above. } -- \(*) -> (*) `on` g . f -- = -- (\h (*) -> (*) `on` h) (g . f) -- = -- flip on (g . f) -- | '&' is a reverse application operator. This provides notational -- convenience. Its precedence is one higher than that of the forward -- application operator '$', which allows '&' to be nested in '$'. -- -- >>> 5 & (+1) & show -- "6" -- -- @since 4.8.0.0 (&) :: a -> (a -> b) -> b x & f = f x -- $setup -- >>> import Prelude