{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeSynonymInstances #-}
module Basement.Numerical.Multiplicative
    ( Multiplicative(..)
    , IDivisible(..)
    , Divisible(..)
    , recip
    ) where

import           Basement.Compat.Base
import           Basement.Compat.C.Types
import           Basement.Compat.Natural
import           Basement.Numerical.Number
import           Basement.Numerical.Additive
import           Basement.Types.Word128 (Word128)
import           Basement.Types.Word256 (Word256)
import qualified Basement.Types.Word128 as Word128
import qualified Basement.Types.Word256 as Word256
import qualified Prelude

-- | Represent class of things that can be multiplied together
--
-- > x * midentity = x
-- > midentity * x = x
class Multiplicative a where
    {-# MINIMAL midentity, (*) #-}
    -- | Identity element over multiplication
    midentity :: a

    -- | Multiplication of 2 elements that result in another element
    (*) :: a -> a -> a

    -- | Raise to power, repeated multiplication
    -- e.g.
    -- > a ^ 2 = a * a
    -- > a ^ 10 = (a ^ 5) * (a ^ 5) ..
    --(^) :: (IsNatural n) => a -> n -> a
    (^) :: (IsNatural n, IDivisible n) => a -> n -> a
    -- default (^) :: (IDivisible n, IsNatural n, Multiplicative a) => a -> n -> a
    (^) = power

-- | Represent types that supports an euclidian division
--
-- > (x ‘div‘ y) * y + (x ‘mod‘ y) == x
class (Additive a, Multiplicative a) => IDivisible a where
    {-# MINIMAL (div, mod) | divMod #-}
    div :: a -> a -> a
    div a b = fst $ divMod a b
    mod :: a -> a -> a
    mod a b = snd $ divMod a b
    divMod :: a -> a -> (a, a)
    divMod a b = (div a b, mod a b)

-- | Support for division between same types
--
-- This is likely to change to represent specific mathematic divisions
class Multiplicative a => Divisible a where
    {-# MINIMAL (/) #-}
    (/) :: a -> a -> a

infixl 7  *, /
infixr 8  ^

instance Multiplicative Integer where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Int where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Int8 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Int16 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Int32 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Int64 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Natural where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word8 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word16 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word32 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word64 where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative Word128 where
    midentity = 1
    (*) = (Word128.*)
instance Multiplicative Word256 where
    midentity = 1
    (*) = (Word256.*)

instance Multiplicative Prelude.Float where
    midentity = 1.0
    (*) = (Prelude.*)
instance Multiplicative Prelude.Double where
    midentity = 1.0
    (*) = (Prelude.*)
instance Multiplicative Prelude.Rational where
    midentity = 1.0
    (*) = (Prelude.*)

instance Multiplicative CChar where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CSChar where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUChar where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CShort where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUShort where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CInt where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUInt where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CLong where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CULong where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CPtrdiff where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CSize where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CWchar where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CSigAtomic where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CLLong where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CULLong where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CIntPtr where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUIntPtr where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CIntMax where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUIntMax where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CClock where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CTime where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CUSeconds where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative CSUSeconds where
    midentity = 1
    (*) = (Prelude.*)
instance Multiplicative COff where
    midentity = 1
    (*) = (Prelude.*)

instance Multiplicative CFloat where
    midentity = 1.0
    (*) = (Prelude.*)
instance Multiplicative CDouble where
    midentity = 1.0
    (*) = (Prelude.*)

instance IDivisible Integer where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Int where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Int8 where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Int16 where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Int32 where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Int64 where
    div = Prelude.div
    mod = Prelude.mod
instance IDivisible Natural where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word8 where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word16 where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word32 where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word64 where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible Word128 where
    div = Word128.quot
    mod = Word128.rem
instance IDivisible Word256 where
    div = Word256.quot
    mod = Word256.rem

instance IDivisible CChar where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CSChar where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CUChar where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CShort where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CUShort where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CInt where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CUInt where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CLong where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CULong where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CPtrdiff where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CSize where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CWchar where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CSigAtomic where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CLLong where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CULLong where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CIntPtr where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CUIntPtr where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CIntMax where
    div = Prelude.quot
    mod = Prelude.rem
instance IDivisible CUIntMax where
    div = Prelude.quot
    mod = Prelude.rem

instance Divisible Prelude.Rational where
    (/) = (Prelude./)
instance Divisible Float where
    (/) = (Prelude./)
instance Divisible Double where
    (/) = (Prelude./)

instance Divisible CFloat where
    (/) = (Prelude./)
instance Divisible CDouble where
    (/) = (Prelude./)

recip :: Divisible a => a -> a
recip x = midentity / x

power :: (IsNatural n, IDivisible n, Multiplicative a) => a -> n -> a
power a n
    | n == 0    = midentity
    | otherwise = squaring midentity a n
  where
    squaring y x i
        | i == 0    = y
        | i == 1    = x * y
        | even i    = squaring y (x*x) (i`div`2)
        | otherwise = squaring (x*y) (x*x) (pred i`div` 2)

even :: (IDivisible n, IsIntegral n) => n -> Bool
even n = (n `mod` 2) == 0