module Basement.Sized.Vect
( Vect
, MVect
, unVect
, toVect
, empty
, singleton
, replicate
, thaw
, freeze
, index
, map
, foldl'
, foldr
, cons
, snoc
, elem
, sub
, uncons
, unsnoc
, splitAt
, all
, any
, find
, reverse
, sortBy
, intersperse
) where
import Basement.Compat.Base
import Basement.Nat
import Basement.NormalForm
import Basement.Types.OffsetSize
import Basement.Monad
import Basement.PrimType (PrimType)
import qualified Basement.BoxedArray as A
import Data.Proxy
newtype Vect (n :: Nat) a = Vect { unVect :: A.Array a } deriving (NormalForm, Eq, Show)
newtype MVect (n :: Nat) ty st = MVect { unMVect :: A.MArray ty st }
instance Functor (Vect n) where
fmap = map
toVect :: forall n ty . (KnownNat n, Countable ty n) => A.Array ty -> Maybe (Vect n ty)
toVect b
| expected == A.length b = Just (Vect b)
| otherwise = Nothing
where
expected = toCount @n
empty :: Vect 0 ty
empty = Vect A.empty
singleton :: ty -> Vect 1 ty
singleton a = Vect (A.singleton a)
create :: forall a (n :: Nat) . (Countable a n, KnownNat n) => (Offset a -> a) -> Vect n a
create f = Vect $ A.create sz f
where
sz = natValCountOf (Proxy :: Proxy n)
replicate :: forall n ty . (KnownNat n, Countable ty n) => ty -> Vect n ty
replicate a = Vect (A.replicate (toCount @n) a)
thaw :: (KnownNat n, PrimMonad prim) => Vect n ty -> prim (MVect n ty (PrimState prim))
thaw b = MVect <$> A.thaw (unVect b)
freeze :: (PrimMonad prim, Countable ty n) => MVect n ty (PrimState prim) -> prim (Vect n ty)
freeze b = Vect <$> A.freeze (unMVect b)
write :: PrimMonad prim => MVect n ty (PrimState prim) -> Offset ty -> ty -> prim ()
write (MVect ma) ofs v = A.write ma ofs v
read :: PrimMonad prim => MVect n ty (PrimState prim) -> Offset ty -> prim ty
read (MVect ma) ofs = A.read ma ofs
indexStatic :: forall i n ty . (KnownNat i, CmpNat i n ~ 'LT, Offsetable ty i) => Vect n ty -> ty
indexStatic b = A.unsafeIndex (unVect b) (toOffset @i)
index :: Vect n ty -> Offset ty -> ty
index b ofs = A.index (unVect b) ofs
map :: (a -> b) -> Vect n a -> Vect n b
map f b = Vect (fmap f (unVect b))
foldl' :: (a -> ty -> a) -> a -> Vect n ty -> a
foldl' f acc b = A.foldl' f acc (unVect b)
foldr :: (ty -> a -> a) -> a -> Vect n ty -> a
foldr f acc b = A.foldr f acc (unVect b)
cons :: ty -> Vect n ty -> Vect (n+1) ty
cons e = Vect . A.cons e . unVect
snoc :: Vect n ty -> ty -> Vect (n+1) ty
snoc b = Vect . A.snoc (unVect b)
sub :: forall i j n ty
. ( (i <=? n) ~ 'True
, (j <=? n) ~ 'True
, (i <=? j) ~ 'True
, KnownNat i
, KnownNat j
, Offsetable ty i
, Offsetable ty j )
=> Vect n ty
-> Vect (ji) ty
sub block = Vect (A.sub (unVect block) (toOffset @i) (toOffset @j))
uncons :: forall n ty . (CmpNat 0 n ~ 'LT, KnownNat n, Offsetable ty n)
=> Vect n ty
-> (ty, Vect (n1) ty)
uncons b = (indexStatic @0 b, Vect (A.sub (unVect b) 1 (toOffset @n)))
unsnoc :: forall n ty . (CmpNat 0 n ~ 'LT, KnownNat n, Offsetable ty n)
=> Vect n ty
-> (Vect (n1) ty, ty)
unsnoc b =
( Vect (A.sub (unVect b) 0 (toOffset @n `offsetSub` 1))
, A.unsafeIndex (unVect b) (toOffset @n `offsetSub` 1))
splitAt :: forall i n ty . (CmpNat i n ~ 'LT, KnownNat i, Countable ty i) => Vect n ty -> (Vect i ty, Vect (ni) ty)
splitAt b =
let (left, right) = A.splitAt (toCount @i) (unVect b)
in (Vect left, Vect right)
elem :: Eq ty => ty -> Vect n ty -> Bool
elem e b = A.elem e (unVect b)
all :: (ty -> Bool) -> Vect n ty -> Bool
all p b = A.all p (unVect b)
any :: (ty -> Bool) -> Vect n ty -> Bool
any p b = A.any p (unVect b)
find :: (ty -> Bool) -> Vect n ty -> Maybe ty
find p b = A.find p (unVect b)
reverse :: Vect n ty -> Vect n ty
reverse = Vect . A.reverse . unVect
sortBy :: (ty -> ty -> Ordering) -> Vect n ty -> Vect n ty
sortBy f b = Vect (A.sortBy f (unVect b))
intersperse :: (CmpNat n 1 ~ 'GT) => ty -> Vect n ty -> Vect (n+n1) ty
intersperse sep b = Vect (A.intersperse sep (unVect b))
toCount :: forall n ty . (KnownNat n, Countable ty n) => CountOf ty
toCount = natValCountOf (Proxy @n)
toOffset :: forall n ty . (KnownNat n, Offsetable ty n) => Offset ty
toOffset = natValOffset (Proxy @n)