{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} #endif #ifndef MIN_VERSION_semigroups #define MIN_VERSION_semigroups(x,y,z) 0 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2011-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.Bitraversable ( Bitraversable(..) , bisequenceA , bisequence , bimapM , bifor , biforM , bimapAccumL , bimapAccumR , bimapDefault , bifoldMapDefault ) where import Control.Applicative import Data.Bifunctor import Data.Bifoldable #if MIN_VERSION_semigroups(0,16,2) import Data.Semigroup #else import Data.Monoid #endif #ifdef MIN_VERSION_tagged import Data.Tagged #endif #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 import Data.Typeable #endif -- | 'Bitraversable' identifies bifunctorial data structures whose elements can -- be traversed in order, performing 'Applicative' or 'Monad' actions at each -- element, and collecting a result structure with the same shape. -- -- A definition of 'traverse' must satisfy the following laws: -- -- [/naturality/] -- @'bitraverse' (t . f) (t . g) ≡ t . 'bitraverse' f g@ -- for every applicative transformation @t@ -- -- [/identity/] -- @'bitraverse' 'Identity' 'Identity' ≡ 'Identity'@ -- -- [/composition/] -- @'Compose' . 'fmap' ('bitraverse' g1 g2) . 'bitraverse' f1 f2 -- ≡ 'traverse' ('Compose' . 'fmap' g1 . f1) ('Compose' . 'fmap' g2 . f2)@ -- -- where an /applicative transformation/ is a function -- -- @t :: ('Applicative' f, 'Applicative' g) => f a -> g a@ -- -- preserving the 'Applicative' operations: -- -- @ -- t ('pure' x) = 'pure' x -- t (f '<*>' x) = t f '<*>' t x -- @ -- -- and the identity functor 'Identity' and composition functors 'Compose' are -- defined as -- -- > newtype Identity a = Identity { runIdentity :: a } -- > -- > instance Functor Identity where -- > fmap f (Identity x) = Identity (f x) -- > -- > instance Applicative Identity where -- > pure = Identity -- > Identity f <*> Identity x = Identity (f x) -- > -- > newtype Compose f g a = Compose (f (g a)) -- > -- > instance (Functor f, Functor g) => Functor (Compose f g) where -- > fmap f (Compose x) = Compose (fmap (fmap f) x) -- > -- > instance (Applicative f, Applicative g) => Applicative (Compose f g) where -- > pure = Compose . pure . pure -- > Compose f <*> Compose x = Compose ((<*>) <$> f <*> x) -- -- Some simple examples are 'Either' and '(,)': -- -- > instance Bitraversable Either where -- > bitraverse f _ (Left x) = Left <$> f x -- > bitraverse _ g (Right y) = Right <$> g y -- > -- > instance Bitraversable (,) where -- > bitraverse f g (x, y) = (,) <$> f x <*> g y -- -- 'Bitraversable' relates to its superclasses in the following ways: -- -- @ -- 'bimap' f g ≡ 'runIdentity' . 'bitraverse' ('Identity' . f) ('Identity' . g) -- 'bifoldMap' f g = 'getConst' . 'bitraverse' ('Const' . f) ('Const' . g) -- @ -- -- These are available as 'bimapDefault' and 'bifoldMapDefault' respectively. class (Bifunctor t, Bifoldable t) => Bitraversable t where -- | Evaluates the relevant functions at each element in the structure, running -- the action, and builds a new structure with the same shape, using the -- elements produced from sequencing the actions. -- -- @'bitraverse' f g ≡ 'bisequenceA' . 'bimap' f g@ bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverse f g = bisequenceA . bimap f g {-# INLINE bitraverse #-} -- | Sequences all the actions in a structure, building a new structure with the -- same shape using the results of the actions. -- -- @'bisequenceA' ≡ 'bitraverse' 'id' 'id'@ bisequenceA :: (Bitraversable t, Applicative f) => t (f a) (f b) -> f (t a b) bisequenceA = bitraverse id id {-# INLINE bisequenceA #-} -- | As 'bitraverse', but uses evidence that @m@ is a 'Monad' rather than an -- 'Applicative'. -- -- @ -- 'bimapM' f g ≡ 'bisequence' . 'bimap' f g -- 'bimapM' f g ≡ 'unwrapMonad' . 'bitraverse' ('WrapMonad' . f) ('WrapMonad' . g) -- @ bimapM :: (Bitraversable t, Monad m) => (a -> m c) -> (b -> m d) -> t a b -> m (t c d) bimapM f g = unwrapMonad . bitraverse (WrapMonad . f) (WrapMonad . g) {-# INLINE bimapM #-} -- | As 'bisequenceA', but uses evidence that @m@ is a 'Monad' rather than an -- 'Applicative'. -- -- @ -- 'bisequence' ≡ 'bimapM' 'id' 'id' -- 'bisequence' ≡ 'unwrapMonad' . 'bisequenceA' . 'bimap' 'WrapMonad' 'WrapMonad' -- @ bisequence :: (Bitraversable t, Monad m) => t (m a) (m b) -> m (t a b) bisequence = bimapM id id {-# INLINE bisequence #-} #if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710 deriving instance Typeable Bitraversable #endif #if MIN_VERSION_semigroups(0,16,2) instance Bitraversable Arg where bitraverse f g (Arg a b) = Arg <$> f a <*> g b #endif instance Bitraversable (,) where bitraverse f g ~(a, b) = (,) <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,) x) where bitraverse f g ~(x, a, b) = (,,) x <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,) x y) where bitraverse f g ~(x, y, a, b) = (,,,) x y <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,) x y z) where bitraverse f g ~(x, y, z, a, b) = (,,,,) x y z <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,,) x y z w) where bitraverse f g ~(x, y, z, w, a, b) = (,,,,,) x y z w <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable ((,,,,,,) x y z w v) where bitraverse f g ~(x, y, z, w, v, a, b) = (,,,,,,) x y z w v <$> f a <*> g b {-# INLINE bitraverse #-} instance Bitraversable Either where bitraverse f _ (Left a) = Left <$> f a bitraverse _ g (Right b) = Right <$> g b {-# INLINE bitraverse #-} instance Bitraversable Const where bitraverse f _ (Const a) = Const <$> f a {-# INLINE bitraverse #-} #ifdef MIN_VERSION_tagged instance Bitraversable Tagged where bitraverse _ g (Tagged b) = Tagged <$> g b {-# INLINE bitraverse #-} #endif -- | 'bifor' is 'bitraverse' with the structure as the first argument. bifor :: (Bitraversable t, Applicative f) => t a b -> (a -> f c) -> (b -> f d) -> f (t c d) bifor t f g = bitraverse f g t {-# INLINE bifor #-} -- | 'biforM' is 'bimapM' with the structure as the first argument. biforM :: (Bitraversable t, Monad m) => t a b -> (a -> m c) -> (b -> m d) -> m (t c d) biforM t f g = bimapM f g t {-# INLINE biforM #-} -- | left-to-right state transformer newtype StateL s a = StateL { runStateL :: s -> (s, a) } instance Functor (StateL s) where fmap f (StateL k) = StateL $ \ s -> let (s', v) = k s in (s', f v) {-# INLINE fmap #-} instance Applicative (StateL s) where pure x = StateL (\ s -> (s, x)) {-# INLINE pure #-} StateL kf <*> StateL kv = StateL $ \ s -> let (s', f) = kf s (s'', v) = kv s' in (s'', f v) {-# INLINE (<*>) #-} -- | Traverses a structure from left to right, threading a state of type @a@ -- and using the given actions to compute new elements for the structure. bimapAccumL :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumL f g s t = runStateL (bitraverse (StateL . flip f) (StateL . flip g) t) s {-# INLINE bimapAccumL #-} -- | right-to-left state transformer newtype StateR s a = StateR { runStateR :: s -> (s, a) } instance Functor (StateR s) where fmap f (StateR k) = StateR $ \ s -> let (s', v) = k s in (s', f v) {-# INLINE fmap #-} instance Applicative (StateR s) where pure x = StateR (\ s -> (s, x)) {-# INLINE pure #-} StateR kf <*> StateR kv = StateR $ \ s -> let (s', v) = kv s (s'', f) = kf s' in (s'', f v) {-# INLINE (<*>) #-} -- | Traverses a structure from right to left, threading a state of type @a@ -- and using the given actions to compute new elements for the structure. bimapAccumR :: Bitraversable t => (a -> b -> (a, c)) -> (a -> d -> (a, e)) -> a -> t b d -> (a, t c e) bimapAccumR f g s t = runStateR (bitraverse (StateR . flip f) (StateR . flip g) t) s {-# INLINE bimapAccumR #-} newtype Id a = Id { getId :: a } instance Functor Id where fmap f (Id x) = Id (f x) {-# INLINE fmap #-} instance Applicative Id where pure = Id {-# INLINE pure #-} Id f <*> Id x = Id (f x) {-# INLINE (<*>) #-} -- | A default definition of 'bimap' in terms of the 'Bitraversable' operations. bimapDefault :: Bitraversable t => (a -> b) -> (c -> d) -> t a c -> t b d bimapDefault f g = getId . bitraverse (Id . f) (Id . g) {-# INLINE bimapDefault #-} -- | A default definition of 'bifoldMap' in terms of the 'Bitraversable' operations. bifoldMapDefault :: (Bitraversable t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m bifoldMapDefault f g = getConst . bitraverse (Const . f) (Const . g) {-# INLINE bifoldMapDefault #-}