#if __GLASGOW_HASKELL__ >= 702
#endif
#if __GLASGOW_HASKELL__ >= 706
#endif
module Data.Bifunctor.Product
( Product(..)
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Data.Biapplicative
import Data.Bifoldable
import Data.Bifunctor.Functor
import Data.Bitraversable
#if __GLASGOW_HASKELL__ < 710
import Data.Monoid hiding (Product)
#endif
#if __GLASGOW_HASKELL__ >= 708
import Data.Typeable
#endif
#if __GLASGOW_HASKELL__ >= 702
import GHC.Generics
#endif
data Product f g a b = Pair (f a b) (g a b)
deriving ( Eq, Ord, Show, Read
#if __GLASGOW_HASKELL__ >= 702
, Generic
#endif
#if __GLASGOW_HASKELL__ >= 708
, Generic1
, Typeable
#endif
)
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708
data ProductMetaData
data ProductMetaCons
instance Datatype ProductMetaData where
datatypeName _ = "Product"
moduleName _ = "Data.Bifunctor.Product"
instance Constructor ProductMetaCons where
conName _ = "Pair"
instance Generic1 (Product f g a) where
type Rep1 (Product f g a) = D1 ProductMetaData (C1 ProductMetaCons ((:*:)
(S1 NoSelector (Rec1 (f a)))
(S1 NoSelector (Rec1 (g a)))))
from1 (Pair f g) = M1 (M1 (M1 (Rec1 f) :*: M1 (Rec1 g)))
to1 (M1 (M1 (M1 f :*: M1 g))) = Pair (unRec1 f) (unRec1 g)
#endif
instance (Bifunctor f, Bifunctor g) => Bifunctor (Product f g) where
first f (Pair x y) = Pair (first f x) (first f y)
second g (Pair x y) = Pair (second g x) (second g y)
bimap f g (Pair x y) = Pair (bimap f g x) (bimap f g y)
instance (Biapplicative f, Biapplicative g) => Biapplicative (Product f g) where
bipure a b = Pair (bipure a b) (bipure a b)
Pair w x <<*>> Pair y z = Pair (w <<*>> y) (x <<*>> z)
instance (Bifoldable f, Bifoldable g) => Bifoldable (Product f g) where
bifoldMap f g (Pair x y) = bifoldMap f g x `mappend` bifoldMap f g y
instance (Bitraversable f, Bitraversable g) => Bitraversable (Product f g) where
bitraverse f g (Pair x y) = Pair <$> bitraverse f g x <*> bitraverse f g y
instance BifunctorFunctor (Product p) where
bifmap f (Pair p q) = Pair p (f q)
instance BifunctorComonad (Product p) where
biextract (Pair _ q) = q
biduplicate pq@(Pair p _) = Pair p pq
biextend f pq@(Pair p _) = Pair p (f pq)