-- | Random useful stuff I didn't know where to put.
module Bio.Util.Numeric (
wilson, invnormcdf, choose,
estimateComplexity, showNum, showOOM,
log1p, expm1, (<#>),
log1mexp, log1pexp,
lsum, llerp
) where
import Prelude
import Data.Char ( intToDigit )
import Data.List ( foldl1' )
-- | Calculates the Wilson Score interval.
-- If @(l,m,h) = wilson c x n@, then @m@ is the binary proportion and
-- @(l,h)@ it's @c@-confidence interval for @x@ positive examples out of
-- @n@ observations. @c@ is typically something like 0.05.
wilson :: Double -> Int -> Int -> (Double, Double, Double)
wilson c x n = ( (m - h) / d, p, (m + h) / d )
where
nn = fromIntegral n
p = fromIntegral x / nn
z = invnormcdf (1-c*0.5)
h = z * sqrt (( p * (1-p) + 0.25*z*z / nn ) / nn)
m = p + 0.5 * z * z / nn
d = 1 + z * z / nn
showNum :: Show a => a -> String
showNum = triplets [] . reverse . show
where
triplets acc [] = acc
triplets acc [a] = a:acc
triplets acc [a,b] = b:a:acc
triplets acc [a,b,c] = c:b:a:acc
triplets acc (a:b:c:s) = triplets (',':c:b:a:acc) s
showOOM :: Double -> String
showOOM x | x < 0 = '-' : showOOM (negate x)
| otherwise = findSuffix (x*10) ".kMGTPEZY"
where
findSuffix _ [] = "many"
findSuffix y (s:ss) | y < 100 = intToDigit (round y `div` 10) : case (round y `mod` 10, s) of
(0,'.') -> [] ; (0,_) -> [s] ; (d,_) -> [s, intToDigit d]
| y < 1000 = intToDigit (round y `div` 100) : intToDigit ((round y `mod` 100) `div` 10) :
if s == '.' then [] else [s]
| y < 10000 = intToDigit (round y `div` 1000) : intToDigit ((round y `mod` 1000) `div` 100) :
'0' : if s == '.' then [] else [s]
| otherwise = findSuffix (y*0.001) ss
-- Stolen from Lennart Augustsson's erf package, who in turn took it from
-- Accurate to about 1e-9.
invnormcdf :: (Ord a, Floating a) => a -> a
invnormcdf p =
let a1 = -3.969683028665376e+01
a2 = 2.209460984245205e+02
a3 = -2.759285104469687e+02
a4 = 1.383577518672690e+02
a5 = -3.066479806614716e+01
a6 = 2.506628277459239e+00
b1 = -5.447609879822406e+01
b2 = 1.615858368580409e+02
b3 = -1.556989798598866e+02
b4 = 6.680131188771972e+01
b5 = -1.328068155288572e+01
c1 = -7.784894002430293e-03
c2 = -3.223964580411365e-01
c3 = -2.400758277161838e+00
c4 = -2.549732539343734e+00
c5 = 4.374664141464968e+00
c6 = 2.938163982698783e+00
d1 = 7.784695709041462e-03
d2 = 3.224671290700398e-01
d3 = 2.445134137142996e+00
d4 = 3.754408661907416e+00
pLow = 0.02425
nan = 0/0
in if p < 0 then
nan
else if p == 0 then
-1/0
else if p < pLow then
let q = sqrt(-2 * log p)
in (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q+c6) /
((((d1*q+d2)*q+d3)*q+d4)*q+1)
else if p < 1 - pLow then
let q = p - 0.5
r = q*q
in (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r+a6)*q /
(((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r+1)
else if p <= 1 then
- invnormcdf (1 - p)
else
nan
-- | Try to estimate complexity of a whole from a sample. Suppose we
-- sampled @total@ things and among those @singles@ occured only once.
-- How many different things are there?
--
-- Let the total number be @m@. The copy number follows a Poisson
-- distribution with paramter @\lambda@. Let \( z := e^{\lambda} \), then
-- we have:
--
-- \[
-- P( 0 ) = e^{-\lambda} = \frac{1}{z} \\
-- P( 1 ) = \lambda e^{-\lambda} = \frac{\ln z}{z} \\
-- P(\ge 1) = 1 - e^{-\lambda} = 1 - \frac{1}{z} \\
-- \]
-- \[
-- \mbox{singles} = m \frac{\ln z}{z} \\
-- \mbox{total} = m \left( 1 - \frac{1}{z} \right) \\
-- \]
-- \[
-- D := \frac{\mbox{total}}{\mbox{singles}} = (1 - \frac{1}{z}) * \frac{z}{\ln z} \\
-- f := z - 1 - D \ln z = 0
-- \]
--
-- To get @z@, we solve using Newton iteration and then substitute to
-- get @m@:
--
-- \[
-- df/dz = 1 - D/z \\
-- z' = z - \frac{ z (z - 1 - D \ln z) }{ z - D } \\
-- m = \mbox{singles} * \frac{z}{\ln z}
-- \]
--
-- It converges as long as the initial @z@ is large enough, and @10D@
-- (in the line for @zz@ below) appears to work well.
estimateComplexity :: (Integral a, Floating b, Ord b) => a -> a -> Maybe b
estimateComplexity total singles | total <= singles = Nothing
| singles <= 0 = Nothing
| otherwise = Just m
where
d = fromIntegral total / fromIntegral singles
step z = z * (z - 1 - d * log z) / (z - d)
iter z = case step z of zd | abs zd < 1e-12 -> z
| otherwise -> iter $! z-zd
zz = iter $! 10*d
m = fromIntegral singles * zz / log zz
-- | Computes \( \ln \left( e^x + e^y \right) \) without leaving the log domain and
-- hence without losing precision.
infixl 5 <#>
{-# INLINE (<#>) #-}
(<#>) :: (Floating a, Ord a) => a -> a -> a
x <#> y = if x >= y then x + log1pexp (y-x) else y + log1pexp (x-y)
-- | Computes @log (1+x)@ to a relative precision of @10^-8@ even for
-- very small @x@. Stolen from
{-# INLINE log1p #-}
log1p :: (Floating a, Ord a) => a -> a
log1p x | x < -1 = error "log1p: argument must be greater than -1"
-- x is large enough that the obvious evaluation is OK:
| x > 0.0001 || x < -0.0001 = log $ 1 + x
-- Use Taylor approx. log(1 + x) = x - x^2/2 with error roughly x^3/3
-- Since |x| < 10^-4, |x|^3 < 10^-12, relative error less than 10^-8:
| otherwise = (1 - 0.5*x) * x
-- | Computes \( e^x - 1 \) to a relative precision of @10^-10@ even for
-- very small @x@. Stolen from
{-# INLINE expm1 #-}
expm1 :: (Floating a, Ord a) => a -> a
expm1 x | x > -0.00001 && x < 0.00001 = (1 + 0.5 * x) * x -- Taylor approx
| otherwise = exp x - 1 -- direct eval
-- | Computes \( \ln (1 - e^x) \), following Martin Mächler.
{-# INLINE log1mexp #-}
log1mexp :: (Floating a, Ord a) => a -> a
log1mexp x | x > - log 2 = log (- expm1 x)
| otherwise = log1p (- exp x)
-- | Computes \( \ln (1 + e^x) \), following Martin Mächler.
{-# INLINE log1pexp #-}
log1pexp :: (Floating a, Ord a) => a -> a
log1pexp x | x <= -37 = exp x
| x <= 18 = log1p $ exp x
| x <= 33.3 = x + exp (-x)
| otherwise = x
-- | Computes \( \ln ( \sum_i e^{x_i} ) \) sensibly. The list must be
-- sorted in descending(!) order.
{-# INLINE lsum #-}
lsum :: (Floating a, Ord a) => [a] -> a
lsum = foldl1' (\x y -> if x >= y then x + log1pexp (y-x) else err)
where err = error "lsum: argument list must be in descending order"
-- | Computes \( \ln \left( c e^x + (1-c) e^y \right) \).
{-# INLINE llerp #-}
llerp :: (Floating a, Ord a) => a -> a -> a -> a
llerp c x y | c <= 0.0 = y
| c >= 1.0 = x
| x >= y = log c + x + log1p ( (1-c)/c * exp (y-x) ) -- Hmm.
| otherwise = log1p (-c) + y + log1p ( c/(1-c) * exp (x-y) ) -- Hmm.
-- | Binomial coefficient: \( \mbox{choose n k} = \frac{n!}{(n-k)! k!} \)
{-# INLINE choose #-}
choose :: Integral a => a -> a -> a
choose n k = product [n-k+1 .. n] `div` product [2..k]