{-# OPTIONS_GHC -fno-warn-orphans #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} -- | -- Copyright : (c) 2012-2014 Iago Abal -- (c) 2012-2013 HASLab & University of Minho -- License : BSD3 -- Maintainer: Iago Abal -- -- QuickCheck properties for 'Data.BitVector'. module Main where import Data.BitVector as BV import Control.Applicative ( (<$>), (<*>) ) import Test.Framework.TH import Test.Framework.Providers.QuickCheck2 import Test.QuickCheck.Arbitrary import Test.QuickCheck.Property ( Property, Testable, forAll, (==>) ) import Test.QuickCheck.Gen main :: IO () main = $(defaultMainGenerator) -- * Generators c_MAX_SIZE :: Int c_MAX_SIZE = 8192 data BV2 = BV2 !BV !BV deriving (Eq,Show) data BV3 = BV3 !BV !BV !BV deriving (Eq,Show) divides :: Integral a => a -> a -> Bool divides k n = n `mod` k == 0 gSize :: Gen Int gSize = min c_MAX_SIZE . (+1) . abs <$> arbitrary gBV :: Int -> Gen BV gBV sz = bitVec sz <$> choose (0::Integer,2^sz-1) gDivisor :: Int -> Gen Int gDivisor n = suchThat (choose (1,n)) (`divides` n) forallDivisorOf :: Testable prop => Int -> (Int -> prop) -> Property forallDivisorOf n = forAll (gDivisor n) gIndex :: BV -> Gen Int gIndex a = choose (0,size(a)-1) forallIndexOf :: Testable prop => BV -> (Int -> prop) -> Property forallIndexOf a = forAll (gIndex a) gIndex1 :: BV -> Gen Int gIndex1 a = choose (1,size a) forallIndex1Of :: Testable prop => BV -> (Int -> prop) -> Property forallIndex1Of a = forAll (gIndex1 a) instance Arbitrary BV where arbitrary = gBV =<< gSize instance Arbitrary BV2 where arbitrary = gSize >>= \sz -> BV2 <$> gBV sz <*> gBV sz instance Arbitrary BV3 where arbitrary = gSize >>= \sz -> BV3 <$> gBV sz <*> gBV sz <*> gBV sz -- * bitVec prop_bv_nat :: Integer -> Property prop_bv_nat i = i >= 0 ==> nat(fromInteger i) == i prop_bv_neg :: Integer -> Property prop_bv_neg i = i < 0 ==> int(fromInteger i) == i -- * Indexing prop_rev_index :: BV -> Property prop_rev_index a = forallIndexOf a $ \i -> a !. i == a @. (size(a)-i-1) prop_least :: BV -> Property prop_least a = forallIndex1Of a $ \m -> least m a ==. a@@(m-1,0) prop_most :: BV -> Property prop_most a = forallIndex1Of a $ \m -> most m a ==. a@@(n-1,n-m) where n = size a -- * Negate prop_neg_id :: BV -> Bool prop_neg_id a = -(-a) ==. a prop_abs_id :: BV -> Bool prop_abs_id a = abs(abs(a)) ==. abs(a) -- * Addition prop_plus_right_id :: BV -> Bool prop_plus_right_id a = a + zeros(size a) ==. a prop_plus_comm :: BV -> BV -> Bool prop_plus_comm a b = a + b ==. b + a prop_plus_assoc :: BV3 -> Bool prop_plus_assoc (BV3 a b c) = (a + b) + c ==. a + (b + c) -- * Multiplication prop_mult_comm :: BV -> BV -> Bool prop_mult_comm a b = a * b ==. b * a prop_mult_assoc :: BV3 -> Bool prop_mult_assoc (BV3 a b c) = (a * b) * c ==. a * (b * c) prop_mult_plus_distrib :: BV3 -> Bool prop_mult_plus_distrib (BV3 a b c) = a * (b + c) ==. (a * b) + (a * c) -- * Division prop_div :: BV -> BV -> Property prop_div a b = b /= 0 ==> a == q*b + r && r <= b where (q,r) = quotRem a b prop_sdiv_is_div :: BV -> BV -> Property prop_sdiv_is_div a b = isNat a && isPos b ==> a `sdiv` b ==. a `div` b prop_srem_is_rem :: BV -> BV -> Property prop_srem_is_rem a b = isNat a && isPos b ==> a `srem` b ==. a `rem` b prop_smod_is_rem :: BV -> BV -> Property prop_smod_is_rem a b = isNat a && isPos b ==> a `smod` b ==. a `rem` b -- * Not prop_not_id :: BV -> Bool prop_not_id a = BV.not(BV.not a) ==. a -- * And prop_and_comm :: BV -> BV -> Bool prop_and_comm a b = a .&. b ==. b .&. a prop_and_assoc :: BV3 -> Bool prop_and_assoc (BV3 a b c) = (a .&. b) .&. c ==. a .&. (b .&. c) -- * Shift prop_shl_id :: BV -> Bool prop_shl_id a = a `shiftL` 0 ==. a prop_shl_0 :: BV -> Int -> Property prop_shl_0 a i = i >= size a ==> a `shiftL` i == 0 prop_shl_mul :: BV -> Property prop_shl_mul a = forallIndex1Of a $ \i -> a `shiftL` i == a * bitVec n ((2::Integer)^i) where n = size a prop_shr_id :: BV -> Bool prop_shr_id a = a `shiftR` 0 ==. a prop_shr_0 :: BV -> Int -> Property prop_shr_0 a i = i >= size a ==> a `shiftR` i == 0 prop_shr_div :: BV -> Property prop_shr_div a = forallIndex1Of a $ \i -> a `shiftR` i == a `div` bitVec n ((2::Integer)^i) where n = size a -- * Rotate prop_rol_id :: BV -> Bool prop_rol_id a = a `rotateL` (size a) ==. a prop_ror_id :: BV -> Bool prop_ror_id a = a `rotateR` (size a) ==. a -- * Split & group prop_split_join_id :: BV -> Property prop_split_join_id a = forallDivisorOf (size a) $ \n -> BV.join (BV.split n a) ==. a prop_group_join_id :: BV -> Property prop_group_join_id a = forallDivisorOf (size a) $ \n -> BV.join (BV.group n a) ==. a