-- | -- Module: Math.NumberTheory.Canon.Simple -- Copyright: (c) 2015-2018 Frederick Schneider -- Licence: MIT -- Maintainer: Frederick Schneider -- Stability: Provisional -- -- This a wrapper for the Canonical Representation type found in the Internals module. -- If you want to work with arbitrarily nested prime towers, you can use the Math.NumberTheory.Canon module. {-# LANGUAGE MultiParamTypeClasses,FunctionalDependencies, FlexibleInstances, PatternSynonyms, ViewPatterns #-} module Math.NumberTheory.Canon.Simple ( SimpleCanon(..), SC, toSimpleCanon, toSC, toSimpleCanonViaUserFunc, fromSimpleCanon, fromSC, CanonConv, scGCD, scLCM, scLog, scLogDouble, scNegative, scPositive, scToInteger, scToI, RationalSimpleCanon(..), RC, toRationalSimpleCanon, toRC, toRationalSimpleCanonViaUserFunc, fromRationalSimpleCanon, fromRC, rcNegative, rcPositive, getNumer, getDenom, getNumerDenom, getNumerAsRC, getDenomAsRC, getNumerDenomAsRCs, rcLog, rcLogDouble, (>^), (<^), (%) ) where import GHC.Real (Ratio(..)) import Math.NumberTheory.Canon.Internals import Math.NumberTheory.Canon.Additive import Math.NumberTheory.Canon.AurifCyclo (crCycloInitMap) -- | SimpleCanon is a new type wrapping a canonical representation. newtype SimpleCanon = MakeSC CR_ deriving (Eq) -- | This function allow you to specify a user function when converting a canon rep to an SC. toSimpleCanonViaUserFunc :: CR_ -> (Integer -> Bool) -> SimpleCanon toSimpleCanonViaUserFunc c f | crValidIntegralViaUserFunc c f == False = error $ invalidError | otherwise = MakeSC c where invalidError = "toSimpleCanonViaUserFunc: Invalid integral canonical rep passed to constructor: " ++ (show c) -- | Grab the canon rep from a SimpleCanon. fromSimpleCanon, fromSC :: SimpleCanon -> CR_ fromSimpleCanon (MakeSC i) = i fromSC = fromSimpleCanon -- | Shorthand type declaration type SC = SimpleCanon -- | Define various instances instance Show SimpleCanon where show c = crShow $ fromSC c instance Enum SimpleCanon where toEnum n = toSimpleCanon $ crFromI $ fromIntegral n fromEnum c = fromIntegral $ crToI $ fromSC c instance Ord SimpleCanon where compare x y = crCmp (fromSC x) (fromSC y) instance Real SimpleCanon where toRational c = scToI c :% 1 instance Integral SimpleCanon where toInteger c = scToI c quotRem n m = (MakeSC n', MakeSC m') where (n', m') = fst $ crQuotRem (fromSC n) (fromSC m) crCycloInitMap mod n m = MakeSC $ crMod (fromSC n) (fromSC m) instance Fractional SimpleCanon where fromRational (n :% d) | m == 0 = MakeSC $ crFromI q | otherwise = error "Modulus not zero. Use Rational SimpleCanons for non-integers." where (q, m) = quotRem n d (/) x y = MakeSC $ crDivStrict (fromSC x) (fromSC y) instance Num SimpleCanon where fromInteger n = MakeSC $ crFromI n -- to do: check where called? x + y = MakeSC $ fst $ crAdd (fromSC x) (fromSC y) crCycloInitMap -- discard the map info x - y = MakeSC $ fst $ crSubtract (fromSC x) (fromSC y) crCycloInitMap -- discard the map info x * y = MakeSC $ crMult (fromSC x) (fromSC y) negate x = MakeSC $ crNegate $ fromSC x abs x = MakeSC $ crAbs $ fromSC x signum x = MakeSC $ crSignum $ fromSC x -- | Convert a SimpleCanon back to an Integer. scToInteger, scToI :: SimpleCanon -> Integer scToI c = crToI $ fromSC c scToInteger = scToI -- | SimpleCanon GCD and LCM functions scGCD, scLCM :: SimpleCanon -> SimpleCanon -> SimpleCanon scGCD x y = MakeSC $ crGCD (fromSC x) (fromSC y) scLCM x y = MakeSC $ crLCM (fromSC x) (fromSC y) -- | Wrappers for underlying canon rep functions scNegative, scPositive :: SimpleCanon -> Bool scNegative c = crNegative $ fromSC c scPositive c = crPositive $ fromSC c -- | Wrapper for underlying CR function scLog :: SimpleCanon -> Rational scLog x = crLog $ fromSC x -- | Wrapper for underlying CR function scLogDouble :: SimpleCanon -> Double scLogDouble x = crLogDouble $ fromSC x -- | Newtype for RationalSimpleCanon. The underlying canon rep is the same. newtype RationalSimpleCanon = MakeRC CR_ deriving (Eq) -- | Convert canon rep to RationalSimpleCanon via a user-supplied criterion function. toRationalSimpleCanonViaUserFunc :: CR_ -> (Integer -> Bool) -> RationalSimpleCanon toRationalSimpleCanonViaUserFunc c f | crValidRationalViaUserFunc c f == False = error $ invalidError | otherwise = MakeRC c where invalidError = "toRationalSimpleCanonViaUserFunc: Invalid rational canonical rep passed to constructor: " ++ (show c) ++ " (user predicate supplied)" -- | Convert RC back to underlying canon rep. fromRationalSimpleCanon, fromRC :: RationalSimpleCanon -> CR_ fromRC (MakeRC i) = i fromRationalSimpleCanon = fromRC -- | Shorthand type name type RC = RationalSimpleCanon -- | Define various instances for RationSimpleCanon. instance Show RationalSimpleCanon where show rc = crShowRational $ fromRC rc instance Enum RationalSimpleCanon where toEnum n = toRC $ crFromI $ fromIntegral n fromEnum c = fromIntegral $ toInteger c -- if not integral, this will fail -- | Caveat: These functions will error out (in)directly if there are any negative exponents. instance Integral RationalSimpleCanon where toInteger rc = crToI $ fromRC rc quotRem n m | crIntegral $ fromRC n = (MakeRC n', MakeRC m') | otherwise = error "Can't perform 'quotRem' on non-integral RationalSimpleCanon" where (n', m') = fst $ crQuotRem (fromRC n) (fromRC m) crCycloInitMap mod n m | crIntegral $ fromRC n = MakeRC $ crMod (fromRC n) (fromRC m) | otherwise = error "Can't perform 'mod' on non-integral RationalSimpleCanon" instance Fractional RationalSimpleCanon where fromRational (n :% d) = MakeRC $ crDivRational (crFromI n) (crFromI d) (/) x y = MakeRC $ crDivRational (fromRC x) (fromRC y) instance Ord RationalSimpleCanon where compare x y = crCmp (fromRC x) (fromRC y) instance Real RationalSimpleCanon where toRational rc = crToRational $ fromRC rc instance Num RationalSimpleCanon where fromInteger n = MakeRC $ crFromI n x + y = MakeRC $ fst $ crAddR (fromRC x) (fromRC y) crCycloInitMap x - y = MakeRC $ fst $ crSubtractR (fromRC x) (fromRC y) crCycloInitMap x * y = MakeRC $ crMult (fromRC x) (fromRC y) negate x = MakeRC $ crNegate $ fromRC x abs x = MakeRC $ crAbs $ fromRC x signum x = MakeRC $ crSignum $ fromRC x -- | Calls underlying canon rep function. rcLog :: RationalSimpleCanon -> Rational rcLog c = crLog $ fromRC c -- | Calls underlying canon rep function. rcLogDouble :: RationalSimpleCanon -> Double rcLogDouble c = crLogDouble $ fromRC c -- | Calls underlying canon rep function. getNumerAsRC :: RationalSimpleCanon -> RationalSimpleCanon getNumerAsRC c = MakeRC $ crNumer $ fromRC c -- | Calls underlying canon rep function. getDenomAsRC :: RationalSimpleCanon -> RationalSimpleCanon getDenomAsRC c = MakeRC $ crDenom $ fromRC c -- | Pulls numerator or denominator from RC and converts it to a SimpleCanon. getNumer, getDenom :: RationalSimpleCanon -> SimpleCanon getNumer c = MakeSC $ crNumer $ fromRC c getDenom c = MakeSC $ crDenom $ fromRC c -- | Wraps crSplit function and returns a pair of SimpleCanons. getNumerDenom :: RationalSimpleCanon -> (SimpleCanon, SimpleCanon) getNumerDenom c = (MakeSC n, MakeSC d) where (n, d) = crSplit $ fromRC c -- | Wraps crSplit function and returns a pair of RationalSimpleCanons. getNumerDenomAsRCs :: RationalSimpleCanon -> (RationalSimpleCanon, RationalSimpleCanon) getNumerDenomAsRCs c = (MakeRC n, MakeRC d) where (n, d) = crSplit $ fromRC c -- | Wraps underlying canon rep functions. rcNegative, rcPositive :: RationalSimpleCanon -> Bool rcNegative x = crNegative $ fromRC x rcPositive x = crPositive $ fromRC x -- | Modulus operator infixl 7 % (%) :: (Integral a) => a -> a -> a n % m = mod n m -- | Multi-param typeclass for exponentiation infixr 9 <^ class SimpleCanonExpnt a b c | a b -> c where -- | Exponentiation Operator (<^) :: a -> b -> c instance SimpleCanonExpnt Integer Integer SimpleCanon where p <^ e = MakeSC $ crExp (crFromI p) e False instance SimpleCanonExpnt SimpleCanon Integer SimpleCanon where p <^ e = MakeSC $ crExp (fromSC p) e False instance SimpleCanonExpnt RationalSimpleCanon Integer RationalSimpleCanon where p <^ e = MakeRC $ crExp (fromRC p) e True instance SimpleCanonExpnt RationalSimpleCanon SimpleCanon RationalSimpleCanon where p <^ e = MakeRC $ crExp (fromRC p) (crToI $ fromSC e) True -- | Multi-param typeclass for radical/root operator infixr 9 >^ -- r >^ n means attempt to take the rth root of n class SimpleCanonRoot a b c | a b -> c where -- | Root Operator (>^) :: a -> b -> c instance SimpleCanonRoot SimpleCanon SimpleCanon SimpleCanon where r >^ n = MakeSC $ crRoot (fromSC n) (toInteger r) instance SimpleCanonRoot Integer Integer SimpleCanon where r >^ n = MakeSC $ crRoot (crFromI n) r instance SimpleCanonRoot Integer SimpleCanon SimpleCanon where r >^ n = MakeSC $ crRoot (fromSC n) r instance SimpleCanonRoot SimpleCanon Integer SimpleCanon where r >^ n = MakeSC $ crRoot (crFromI n) (toInteger r) instance SimpleCanonRoot Integer RationalSimpleCanon RationalSimpleCanon where r >^ n = MakeRC $ crRoot (fromRC n) r -- | Convert CanonConv types to SimpleCanon. toSimpleCanon :: (CanonConv a) => a -> SimpleCanon toSimpleCanon = toSC -- | Convert CanonConv types to RationalSimpleCanon. toRationalSimpleCanon :: (CanonConv a) => a -> RationalSimpleCanon toRationalSimpleCanon = toRC -- | Typeclass for converting to SimpleCanon and RationalSimpleCanon class CanonConv c where -- | Convert a type to a SimpleCanon. toSC :: c -> SimpleCanon -- | Convert a type to a RationalSimpleCanon. toRC :: c -> RationalSimpleCanon instance CanonConv SimpleCanon where toSC c = c toRC c = MakeRC $ fromSC c instance CanonConv CR_ where toSC cr | crValidIntegral cr = MakeSC cr | otherwise = error invalidError where invalidError = "Invalid integral canonical rep passed to constructor: " ++ (show cr) toRC cr | crValidRational cr = MakeRC cr | otherwise = error invalidRepRatioError where invalidRepRatioError = "toRC: Invalid canonical rep passed to constructor: " ++ (show cr) instance CanonConv RationalSimpleCanon where toSC rc | crValidIntegral frc = MakeSC frc | otherwise = error invalidError where frc = fromRC rc invalidError = "Invalid integral canonical rep passed to constructor: " ++ (show rc) toRC rc = rc