{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-orphans #-}
{-# OPTIONS_GHC -Wno-simplifiable-class-constraints #-}
{-# OPTIONS_HADDOCK hide #-}
module Capability.State.Internal.Strategies
( MonadState(..)
, ReaderIORef(..)
, ReaderRef(..)
) where
import Capability.Accessors
import Capability.Reader.Internal.Class
import Capability.State.Internal.Class
import Capability.State.Internal.Strategies.Common
import Capability.Source.Internal.Strategies ()
import Capability.Sink.Internal.Strategies ()
import Control.Monad.IO.Class (MonadIO, liftIO)
import qualified Control.Monad.State.Class as State
import Control.Monad.Trans.Class (MonadTrans, lift)
import Data.Coerce (Coercible, coerce)
import qualified Data.Generics.Product.Fields as Generic
import qualified Data.Generics.Product.Positions as Generic
import Data.IORef
import Data.Kind (Type)
import Data.Mutable
import GHC.Exts (Proxy#)
instance State.MonadState s m => HasState tag s (MonadState m) where
state_ :: forall a. Proxy# tag -> (s -> (a, s)) -> MonadState m a
state_ :: Proxy# tag -> (s -> (a, s)) -> MonadState m a
state_ Proxy# tag
_ = ((s -> (a, s)) -> m a) -> (s -> (a, s)) -> MonadState m a
coerce @((s -> (a, s)) -> m a) (s -> (a, s)) -> m a
forall s (m :: * -> *) a. MonadState s m => (s -> (a, s)) -> m a
State.state
{-# INLINE state_ #-}
instance
( Coercible from to, HasState tag from m
, forall x y. Coercible x y => Coercible (m x) (m y) )
=> HasState tag to (Coerce to m)
where
state_ :: forall a. Proxy# tag -> (to -> (a, to)) -> Coerce to m a
state_ :: Proxy# tag -> (to -> (a, to)) -> Coerce to m a
state_ Proxy# tag
tag = forall b.
Coercible ((from -> (a, from)) -> m a) b =>
((from -> (a, from)) -> m a) -> b
coerce @((from -> (a, from)) -> m a) (((from -> (a, from)) -> m a) -> (to -> (a, to)) -> Coerce to m a)
-> ((from -> (a, from)) -> m a) -> (to -> (a, to)) -> Coerce to m a
forall a b. (a -> b) -> a -> b
$ Proxy# tag -> (from -> (a, from)) -> m a
forall k (tag :: k) s (m :: * -> *) a.
HasState tag s m =>
Proxy# tag -> (s -> (a, s)) -> m a
state_ Proxy# tag
tag
{-# INLINE state_ #-}
instance HasState oldtag s m => HasState newtag s (Rename oldtag m) where
state_ :: forall a. Proxy# newtag -> (s -> (a, s)) -> Rename oldtag m a
state_ :: Proxy# newtag -> (s -> (a, s)) -> Rename oldtag m a
state_ Proxy# newtag
_ = forall b.
Coercible ((s -> (a, s)) -> m a) b =>
((s -> (a, s)) -> m a) -> b
coerce @((s -> (a, s)) -> m a) (((s -> (a, s)) -> m a) -> (s -> (a, s)) -> Rename oldtag m a)
-> ((s -> (a, s)) -> m a) -> (s -> (a, s)) -> Rename oldtag m a
forall a b. (a -> b) -> a -> b
$ forall k (tag :: k) s (m :: * -> *) a.
HasState tag s m =>
(s -> (a, s)) -> m a
forall s (m :: * -> *) a.
HasState oldtag s m =>
(s -> (a, s)) -> m a
state @oldtag
{-# INLINE state_ #-}
instance
( tag ~ field, Generic.HasField' field record v, HasState oldtag record m )
=> HasState tag v (Field field oldtag m)
where
state_ :: forall a.
Proxy# tag
-> (v -> (a, v))
-> Field field oldtag m a
state_ :: Proxy# tag -> (v -> (a, v)) -> Field field oldtag m a
state_ Proxy# tag
_ = forall b.
Coercible ((v -> (a, v)) -> m a) b =>
((v -> (a, v)) -> m a) -> b
coerce @((v -> (a, v)) -> m a) (((v -> (a, v)) -> m a) -> (v -> (a, v)) -> Field field oldtag m a)
-> ((v -> (a, v)) -> m a)
-> (v -> (a, v))
-> Field field oldtag m a
forall a b. (a -> b) -> a -> b
$
forall k (tag :: k) s (m :: * -> *) a.
HasState tag s m =>
(s -> (a, s)) -> m a
forall s (m :: * -> *) a.
HasState oldtag s m =>
(s -> (a, s)) -> m a
state @oldtag ((record -> (a, record)) -> m a)
-> ((v -> (a, v)) -> record -> (a, record)) -> (v -> (a, v)) -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Functor ((,) a) => (v -> (a, v)) -> record -> (a, record)
forall (field :: Symbol) s a. HasField' field s a => Lens s s a a
Generic.field' @field @_ @_ @((,) a)
{-# INLINE state_ #-}
instance
( tag ~ pos, Generic.HasPosition' pos struct v, HasState oldtag struct m )
=> HasState tag v (Pos pos oldtag m)
where
state_ :: forall a.
Proxy# tag
-> (v -> (a, v))
-> Pos pos oldtag m a
state_ :: Proxy# tag -> (v -> (a, v)) -> Pos pos oldtag m a
state_ Proxy# tag
_ = forall b.
Coercible ((v -> (a, v)) -> m a) b =>
((v -> (a, v)) -> m a) -> b
coerce @((v -> (a, v)) -> m a) (((v -> (a, v)) -> m a) -> (v -> (a, v)) -> Pos pos oldtag m a)
-> ((v -> (a, v)) -> m a) -> (v -> (a, v)) -> Pos pos oldtag m a
forall a b. (a -> b) -> a -> b
$
forall k (tag :: k) s (m :: * -> *) a.
HasState tag s m =>
(s -> (a, s)) -> m a
forall s (m :: * -> *) a.
HasState oldtag s m =>
(s -> (a, s)) -> m a
state @oldtag ((struct -> (a, struct)) -> m a)
-> ((v -> (a, v)) -> struct -> (a, struct)) -> (v -> (a, v)) -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Functor ((,) a) => (v -> (a, v)) -> struct -> (a, struct)
forall (i :: Nat) s a. HasPosition' i s a => Lens s s a a
Generic.position' @pos @_ @_ @((,) a)
{-# INLINE state_ #-}
instance (HasState tag s m, MonadTrans t, Monad (t m))
=> HasState tag s (Lift (t m))
where
state_ :: forall a. Proxy# tag -> (s -> (a, s)) -> Lift (t m) a
state_ :: Proxy# tag -> (s -> (a, s)) -> Lift (t m) a
state_ Proxy# tag
_ = ((s -> (a, s)) -> t m a) -> (s -> (a, s)) -> Lift (t m) a
coerce (((s -> (a, s)) -> t m a) -> (s -> (a, s)) -> Lift (t m) a)
-> ((s -> (a, s)) -> t m a) -> (s -> (a, s)) -> Lift (t m) a
forall a b. (a -> b) -> a -> b
$ forall a. Monad m => m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift @t @m (m a -> t m a) -> ((s -> (a, s)) -> m a) -> (s -> (a, s)) -> t m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HasState tag s m => (s -> (a, s)) -> m a
forall k (tag :: k) s (m :: * -> *) a.
HasState tag s m =>
(s -> (a, s)) -> m a
state @tag @s @m @a
{-# INLINE state_ #-}
deriving via ((t2 :: (Type -> Type) -> Type -> Type) ((t1 :: (Type -> Type) -> Type -> Type) m))
instance
( forall x. Coercible (m x) (t2 (t1 m) x)
, Monad m, HasState tag s (t2 (t1 m)) )
=> HasState tag s ((t2 :.: t1) m)
instance
(HasReader tag (IORef s) m, MonadIO m)
=> HasState tag s (ReaderIORef m)
where
state_ :: Proxy# tag -> (s -> (a, s)) -> ReaderIORef m a
state_ Proxy# tag
_ s -> (a, s)
f = m a -> ReaderIORef m a
forall k (m :: k -> *) (a :: k). m a -> ReaderIORef m a
ReaderIORef (m a -> ReaderIORef m a) -> m a -> ReaderIORef m a
forall a b. (a -> b) -> a -> b
$ do
IORef s
ref <- forall k (tag :: k) r (m :: * -> *). HasReader tag r m => m r
forall r (m :: * -> *). HasReader tag r m => m r
ask @tag
IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ IORef s -> (s -> (s, a)) -> IO a
forall a b. IORef a -> (a -> (a, b)) -> IO b
atomicModifyIORef' IORef s
ref ((a, s) -> (s, a)
forall b a. (b, a) -> (a, b)
swap ((a, s) -> (s, a)) -> (s -> (a, s)) -> s -> (s, a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> (a, s)
f)
where
swap :: (b, a) -> (a, b)
swap (b
a, a
b) = (a
b, b
a)
{-# INLINE state_ #-}
instance
( MutableRef ref, RefElement ref ~ s
, HasReader tag ref m, PrimMonad m, PrimState m ~ MCState ref )
=> HasState tag s (ReaderRef m)
where
state_ :: Proxy# tag -> (s -> (a, s)) -> ReaderRef m a
state_ Proxy# tag
_ s -> (a, s)
f = m a -> ReaderRef m a
forall (m :: * -> *) a. m a -> ReaderRef m a
ReaderRef (m a -> ReaderRef m a) -> m a -> ReaderRef m a
forall a b. (a -> b) -> a -> b
$ do
ref
ref <- forall k (tag :: k) r (m :: * -> *). HasReader tag r m => m r
forall r (m :: * -> *). HasReader tag r m => m r
ask @tag
s
s <- ref -> m (RefElement ref)
forall c (m :: * -> *).
(MutableRef c, PrimMonad m, PrimState m ~ MCState c) =>
c -> m (RefElement c)
readRef ref
ref
let (a
a, s
s') = s -> (a, s)
f s
s
ref -> RefElement ref -> m ()
forall c (m :: * -> *).
(MutableRef c, PrimMonad m, PrimState m ~ MCState c) =>
c -> RefElement c -> m ()
writeRef ref
ref s
RefElement ref
s'
a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a
{-# INLINE state_ #-}