module Language.Clafer.Intermediate.ResolverInheritance where
import Control.Applicative
import Control.Monad
import Control.Monad.Error
import Control.Monad.State
import Data.Maybe
import Data.Graph
import Data.Tree
import Data.List
import qualified Data.Map as Map
import Language.ClaferT
import Language.Clafer.Common
import Language.Clafer.Front.Absclafer
import Language.Clafer.Intermediate.Intclafer
import Language.Clafer.Intermediate.ResolverName
resolveNModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveNModule (imodule, genv') =
do
let decls' = _mDecls imodule
decls'' <- mapM (resolveNElement decls') decls'
return (imodule{_mDecls = decls''}, genv' {sClafers = bfs toNodeShallow $ toClafers decls''})
resolveNClafer :: [IElement] -> IClafer -> Resolve IClafer
resolveNClafer declarations clafer =
do
super' <- resolveNSuper declarations $ _super clafer
elements' <- mapM (resolveNElement declarations) $ _elements clafer
return $ clafer {_super = super',
_elements = elements'}
resolveNSuper :: [IElement] -> ISuper -> Resolve ISuper
resolveNSuper declarations x = case x of
ISuper False [PExp _ pid' pos' (IClaferId _ id' isTop')] ->
if isPrimitive id' || id' == "clafer"
then return x
else do
r <- resolveN pos' declarations id'
id'' <- case r of
Nothing -> throwError $ SemanticErr pos' $ "No superclafer found: " ++ id'
Just m -> return $ fst m
return $ ISuper False [idToPExp pid' pos' "" id'' isTop']
_ -> return x
resolveNElement :: [IElement] -> IElement -> Resolve IElement
resolveNElement declarations x = case x of
IEClafer clafer -> IEClafer <$> resolveNClafer declarations clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
resolveN :: Span -> [IElement] -> String -> Resolve (Maybe (String, [IClafer]))
resolveN pos' declarations id' =
findUnique pos' id' $ map (\x -> (x, [x])) $ filter _isAbstract $ bfsClafers $
toClafers declarations
resolveOModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveOModule (imodule, genv') =
do
let decls' = _mDecls imodule
decls'' <- mapM (resolveOElement (defSEnv genv' decls')) decls'
return (imodule {_mDecls = decls''}, genv' {sClafers = bfs toNodeShallow $ toClafers decls''})
resolveOClafer :: SEnv -> IClafer -> Resolve IClafer
resolveOClafer env clafer =
do
super' <- resolveOSuper env {context = Just clafer} $ _super clafer
elements' <- mapM (resolveOElement env {context = Just clafer}) $ _elements clafer
return $ clafer {_super = super', _elements = elements'}
resolveOSuper :: SEnv -> ISuper -> Resolve ISuper
resolveOSuper env x = case x of
ISuper True exps' -> do
exps'' <- mapM (resolvePExp env) exps'
let isOverlap = not (length exps'' == 1 && isPrimitive (getSuperId exps''))
return $ ISuper isOverlap exps''
_ -> return x
resolveOElement :: SEnv -> IElement -> Resolve IElement
resolveOElement env x = case x of
IEClafer clafer -> IEClafer <$> resolveOClafer env clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
analyzeModule :: (IModule, GEnv) -> IModule
analyzeModule (imodule, genv') =
imodule{_mDecls = map (analyzeElement (defSEnv genv' decls')) decls'}
where
decls' = _mDecls imodule
analyzeClafer :: SEnv -> IClafer -> IClafer
analyzeClafer env clafer =
clafer' {_elements = map (analyzeElement env {context = Just clafer'}) $
_elements clafer'}
where
clafer' = clafer {_gcard = analyzeGCard env clafer,
_card = analyzeCard env clafer}
analyzeGCard :: SEnv -> IClafer -> Maybe IGCard
analyzeGCard env clafer = gcard' `mplus` (Just $ IGCard False (0, 1))
where
gcard'
| _isOverlapping $ _super clafer = _gcard clafer
| otherwise = listToMaybe $ mapMaybe _gcard $
findHierarchy getSuper (clafers env) clafer
analyzeCard :: SEnv -> IClafer -> Maybe Interval
analyzeCard env clafer = _card clafer `mplus` Just card'
where
card'
| _isAbstract clafer = (0, 1)
| (isJust $ context env) && pGcard == (0, 1)
|| (isTopLevel $ _cinPos clafer) = (1, 1)
| otherwise = (0, 1)
pGcard = _interval $ fromJust $ _gcard $ fromJust $ context env
isTopLevel (Span (Pos _ c) _) = c==1
analyzeElement :: SEnv -> IElement -> IElement
analyzeElement env x = case x of
IEClafer clafer -> IEClafer $ analyzeClafer env clafer
IEConstraint _ _ -> x
IEGoal _ _ -> x
resolveEModule :: (IModule, GEnv) -> (IModule, GEnv)
resolveEModule (imodule, genv') = (imodule{_mDecls = decls''}, genv'')
where
decls' = _mDecls imodule
(decls'', genv'') = runState (mapM (resolveEElement []
(unrollableModule imodule)
False decls') decls') genv'
unrollableModule :: IModule -> [String]
unrollableModule imodule = getDirUnrollables $
mapMaybe unrollabeDeclaration $ _mDecls imodule
unrollabeDeclaration :: IElement -> Maybe (String, [String])
unrollabeDeclaration x = case x of
IEClafer clafer -> if _isAbstract clafer
then Just (_uid clafer, unrollableClafer clafer)
else Nothing
IEConstraint _ _ -> Nothing
IEGoal _ _ -> Nothing
unrollableClafer :: IClafer -> [String]
unrollableClafer clafer
| _isOverlapping $ _super clafer = []
| getSuper clafer == "clafer" = deps
| otherwise = getSuper clafer : deps
where
deps = (toClafers $ _elements clafer) >>= unrollableClafer
getDirUnrollables :: [(String, [String])] -> [String]
getDirUnrollables dependencies = (filter isUnrollable $ map (map v2n) $
map flatten (scc graph)) >>= map fst3
where
(graph, v2n, _) = graphFromEdges $map (\(c, ss) -> (c, c, ss)) dependencies
isUnrollable (x:[]) = fst3 x `elem` trd3 x
isUnrollable _ = True
resolveEClafer :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IClafer -> m IClafer
resolveEClafer predecessors unrollables absAncestor declarations clafer = do
sClafers' <- gets sClafers
clafer' <- renameClafer absAncestor clafer
let predecessors' = _uid clafer' : predecessors
(sElements, super', superList) <-
resolveEInheritance predecessors' unrollables absAncestor declarations
(findHierarchy getSuper sClafers' clafer)
let sClafer = Map.fromList $ zip (map _uid superList) $ repeat [predecessors']
modify (\e -> e {stable = Map.delete "clafer" $
Map.unionWith ((nub.).(++)) sClafer $
stable e})
elements' <-
mapM (resolveEElement predecessors' unrollables absAncestor declarations)
$ _elements clafer
return $ clafer' {_super = super', _elements = elements' ++ sElements}
renameClafer :: MonadState GEnv m => Bool -> IClafer -> m IClafer
renameClafer False clafer = return clafer
renameClafer True clafer = renameClafer' clafer
renameClafer' :: MonadState GEnv m => IClafer -> m IClafer
renameClafer' clafer = do
let claferIdent = _ident clafer
identCountMap' <- gets identCountMap
let count = Map.findWithDefault 0 claferIdent identCountMap'
modify (\e -> e { identCountMap = Map.alter (\_ -> Just (count+1)) claferIdent identCountMap' } )
return $ clafer { _uid = genId claferIdent count }
genId :: String -> Int -> String
genId id' count = concat ["c", show count, "_", id']
resolveEInheritance :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> [IClafer] -> m ([IElement], ISuper, [IClafer])
resolveEInheritance predecessors unrollables absAncestor declarations allSuper
| _isOverlapping $ _super clafer = return ([], _super clafer, [clafer])
| otherwise = do
let superList = (if absAncestor then id else tail) allSuper
let unrollSuper = filter (\s -> _uid s `notElem` unrollables) $ tail allSuper
elements' <-
mapM (resolveEElement predecessors unrollables True declarations) $
unrollSuper >>= _elements
let super' = if (getSuper clafer `elem` unrollables)
then _super clafer
else ISuper False [idToPExp "" noSpan "" "clafer" False]
return (elements', super', superList)
where
clafer = head allSuper
resolveEElement :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IElement -> m IElement
resolveEElement predecessors unrollables absAncestor declarations x = case x of
IEClafer clafer -> if _isAbstract clafer then return x else IEClafer `liftM`
resolveEClafer predecessors unrollables absAncestor declarations clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x